A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multicomponent lattice Boltzmann method for fluids with a density contrast. | LitMetric

Multicomponent lattice Boltzmann method for fluids with a density contrast.

Phys Rev E Stat Nonlin Soft Matter Phys

Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK.

Published: March 2008

We present and verify a multicomponent lattice Boltzmann simulation scheme for two immiscible and incompressible fluids with a large density contrast. Our method is constructed from a continuum approximation description of a single inhomogeneous, and essentially incompressible, fluid. The equations that arise from this analysis are mapped onto an established multicomponent lattice Boltzmann method. The approach avoids the computational expense of a numerical solution of the fluid pressure field in a separate step. We present results obtained with our model which validate the initial assumptions and verify correct static and dynamic operation of the model up to a fluid density contrast ratio of more than 500. The paper concludes with an example that illustrates the potential utility of the approach by modeling a gas bubble rising under gravity and breaking through a free surface.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.77.036702DOI Listing

Publication Analysis

Top Keywords

multicomponent lattice
12
lattice boltzmann
12
density contrast
12
boltzmann method
8
method fluids
4
fluids density
4
contrast verify
4
verify multicomponent
4
boltzmann simulation
4
simulation scheme
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!