Numerical study of diffusion on a random-mixed-bond lattice.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot, Israel.

Published: March 2008

Diffusion on lattices with random mixed bonds in two and three dimensions is reconsidered using a random walk (RW) algorithm, which is equivalent to the master equation. In this numerical study the main focus is on the simple case of two different transition rates W(1),W(2) along bonds between sites. Although analysis of diffusion and transport on this type of disordered medium, especially for the case of one-bond pure percolation (i.e., W(1)=0 ), comprises a sizable subliterature, we exhibit additional basic results for the two-bond case: When the probability p of W(2) replacing W(1) in a lattice of W(1) bonds is below the percolation threshold p(c) , the mean square displacement r(2) is a nonlinear function of time t . A best fit to the lnr[(2) vs ln t plot is a straight line with the value of the slope varying with p,Delta,d , where Delta identical with W(2)/W(1) and d is the dimension, i.e., r(2) proportional, variant t(1+eta(p,Delta,d)) with eta>0 for Delta>1 . In other terms, all the diffusion (D identical with(r)(2)/2t proportional, variant t(eta)) is anomalous superdiffusion for p1 for d=2,3 . Previous work in the literature for d=2 with a different RW algorithm established an effective diffusion constant D(eff) , which was shown to scale as (p(c)-p)(1/2) . However, the anomalous nature (time dependence) of D(t) becomes manifest with an expanded regime of t , increased range of Delta , and the use of our algorithm. The nature of the superdiffusion is related to the percolation cluster geometry and Lévy walks.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.77.031119DOI Listing

Publication Analysis

Top Keywords

numerical study
8
proportional variant
8
diffusion
5
study diffusion
4
diffusion random-mixed-bond
4
random-mixed-bond lattice
4
lattice diffusion
4
diffusion lattices
4
lattices random
4
random mixed
4

Similar Publications

We investigate the thermoelectric response of an Abrikosov vortex in type-II superconductors in the deep quantum limit. We consider two thermoelectric geometries, a type-II superconductor-insulator-normal-metal (S-I-N) junction and a local scanning tunneling microscope (STM)-tip normal metal probe over the superconductor. We exploit the strong breaking of particle-hole symmetry in vortex-bound states at subgap energies within the superconducting vortex to realize a giant thermoelectric response in the presence of fluxons.

View Article and Find Full Text PDF

Rejuvenation and memory, long considered the distinguishing features of spin glasses, have recently been proven to result from the growth of multiple length scales. This insight, enabled by simulations on the Janus II supercomputer, has opened the door to a quantitative analysis. We combine numerical simulations with comparable experiments to introduce two coefficients that quantify memory.

View Article and Find Full Text PDF

We have observed the laser-assisted dynamic interference in the electron spectra triggered by attosecond pulse trains. The fingerprints of finer interference fringes, much smaller than the laser photon energy, have been clearly identified experimentally. Our measurements are successfully reproduced by theoretical simulations utilizing the numerical solution to the time-dependent Schrödinger equation and the strong-field approximation.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a common complication in hospitalized older patients, associated with increased morbidity, mortality, and health care costs. Major adverse kidney events within 30 days (MAKE30), a composite of death, new renal replacement therapy, or persistent renal dysfunction, has been recommended as a patient-centered endpoint for clinical trials involving AKI.

Objective: This study aimed to develop and validate a machine learning-based model to predict MAKE30 in hospitalized older patients with AKI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!