We have previously reported the in vitro selection of a ribozyme that catalyzes an aldol reaction between a levulinic amide aldol donor and a benzaldehyde substrate. The selection scheme involved the priming of the RNA library with a levulinic amide aldol donor group that was introduced via transcription priming in the presence of a modified guanosine mononucleotide derivative. Here we provide a detailed description of the synthesis of the ribozyme substrates and the substrate oligonucleotides used for its isolation and characterization. The aldol donor group was attached to the phosphate moiety of guanosine monophosphate via a photocleavable linker molecule. This initiator nucleotide was efficiently incorporated into RNA molecules of differing sizes and composition by transcription priming with T7 RNA polymerase. With this method modified RNA oligonucleotides as small as a 6-mer sequence can be generated. A temperature profile of the intermolecular reaction indicates that the modified RNA hexamer binds the ribozyme largely by Watson-Crick pairing and only to a minor extent via the non-RNA moiety, whereas the ribozyme appears to have evolved a specific binding site for the aldehyde substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo800639p | DOI Listing |
Molecules
January 2025
Institute for Organic Synthesis and Photoreactivity of the Italian National Research Council, Area della Ricerca di Bologna, Via P. Gobetti, 101, 40129 Bologna, Italy.
The utilization of the homogeneous ()-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as the key enantioselective step toward the synthesis of the corresponding biologically relevant isotetronic acids featuring a quaternary carbon functionalized with ester and alkyl groups. The transition from homogeneous to heterogeneous flow conditions is also investigated, detailing the fabrication and operation of packed-bed reactors filled with a silica-supported version of the pyrrolidine-tetrazole catalyst (SBA-15 as the matrix).
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India.
Aldolases, especially 2-deoxyribose-5-phosphate aldolase (DERA) enzymes, have been widely employed to access key chiral precursors for various active pharmaceutical ingredients (APIs). This has been enabled by expanding their substrate scope toward non-natural acceptors and donors via protein engineering. In this study, we endeavored to broaden the acceptor substrate scope of DERA from sp.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology Beijing, School of Chemistry and Biological Engineering, CHINA.
Designing and realizing new topologies represent one of the most important ways toward developing new structures and functionalities for molecule-based frameworks including SOFs, MOFs, and COFs. Herein, Aldol condensation between 5,10,15,20-tetrayl(tetrakis(([1,1':3',1''-terphenyl]-4,4''-dicarbaldehyde)))-porphyrin (TTEP) and 2,4,6-trimethyl-1,3,5-triazine (TMT) affords the vinylene-linked 3D covalent organic framework Por-COF-cya. Powder X-ray diffraction (PXRD) in combination with structural simulation reveals its high crystalline structure with an unprecedented cya topology in the molecule-based frameworks reported thus far.
View Article and Find Full Text PDFSmall
December 2024
College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China.
Sci Adv
August 2024
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Fused-ring electronic acceptors (FREAs) have transformed the field of organic solar cells. However, the prevailing syntheses of FREAs suffer from low yield, difficulty in separation, and high cost. Here, we report new and streamlined syntheses with three distinctive key steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!