Photocleavable initiator nucleotide substrates for an aldolase ribozyme.

J Org Chem

LIMES Institute, Program Unit Chemical Biology and Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie & Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.

Published: July 2008

We have previously reported the in vitro selection of a ribozyme that catalyzes an aldol reaction between a levulinic amide aldol donor and a benzaldehyde substrate. The selection scheme involved the priming of the RNA library with a levulinic amide aldol donor group that was introduced via transcription priming in the presence of a modified guanosine mononucleotide derivative. Here we provide a detailed description of the synthesis of the ribozyme substrates and the substrate oligonucleotides used for its isolation and characterization. The aldol donor group was attached to the phosphate moiety of guanosine monophosphate via a photocleavable linker molecule. This initiator nucleotide was efficiently incorporated into RNA molecules of differing sizes and composition by transcription priming with T7 RNA polymerase. With this method modified RNA oligonucleotides as small as a 6-mer sequence can be generated. A temperature profile of the intermolecular reaction indicates that the modified RNA hexamer binds the ribozyme largely by Watson-Crick pairing and only to a minor extent via the non-RNA moiety, whereas the ribozyme appears to have evolved a specific binding site for the aldehyde substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo800639pDOI Listing

Publication Analysis

Top Keywords

aldol donor
12
initiator nucleotide
8
levulinic amide
8
amide aldol
8
priming rna
8
donor group
8
transcription priming
8
modified rna
8
ribozyme
5
rna
5

Similar Publications

The utilization of the homogeneous ()-2-pyrrolidine-tetrazole organocatalyst (Ley catalyst) in the self-condensation of ethyl pyruvate and cross-aldol reactions of ethyl pyruvate donor with non-enolizable pyruvate acceptors, namely the sterically hindered ethyl 3-methyl-2-oxobutyrate or the highly electrophilic methyl 3,3,3-trifluoropyruvate, is described as the key enantioselective step toward the synthesis of the corresponding biologically relevant isotetronic acids featuring a quaternary carbon functionalized with ester and alkyl groups. The transition from homogeneous to heterogeneous flow conditions is also investigated, detailing the fabrication and operation of packed-bed reactors filled with a silica-supported version of the pyrrolidine-tetrazole catalyst (SBA-15 as the matrix).

View Article and Find Full Text PDF

Aldolases, especially 2-deoxyribose-5-phosphate aldolase (DERA) enzymes, have been widely employed to access key chiral precursors for various active pharmaceutical ingredients (APIs). This has been enabled by expanding their substrate scope toward non-natural acceptors and donors via protein engineering. In this study, we endeavored to broaden the acceptor substrate scope of DERA from sp.

View Article and Find Full Text PDF

Designing and realizing new topologies represent one of the most important ways toward developing new structures and functionalities for molecule-based frameworks including SOFs, MOFs, and COFs. Herein, Aldol condensation between 5,10,15,20-tetrayl(tetrakis(([1,1':3',1''-terphenyl]-4,4''-dicarbaldehyde)))-porphyrin (TTEP) and 2,4,6-trimethyl-1,3,5-triazine (TMT) affords the vinylene-linked 3D covalent organic framework Por-COF-cya. Powder X-ray diffraction (PXRD) in combination with structural simulation reveals its high crystalline structure with an unprecedented cya topology in the molecule-based frameworks reported thus far.

View Article and Find Full Text PDF
Article Synopsis
  • - Vinylene-linked COFs are promising materials for photocatalysis due to their structured design and stability, but their performance is limited by issues with exciton binding energy and charge dissociation efficiency.
  • - To tackle this, researchers incorporated complementary donor-acceptor pairs within the COF framework, enhancing charge transfer and reducing recombination, leading to the synthesis of TMT-BT-COF and TMT-TT-COF.
  • - These modified COFs showed impressive catalytic activity, achieving over 92% conversion and 90% selectivity in converting styrene to benzaldehyde, and could also catalyze the epoxidation of styrene in water with notable selectivity.
View Article and Find Full Text PDF

Fused-ring electronic acceptors (FREAs) have transformed the field of organic solar cells. However, the prevailing syntheses of FREAs suffer from low yield, difficulty in separation, and high cost. Here, we report new and streamlined syntheses with three distinctive key steps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!