The first demonstration, to our knowledge, of the creation of ultrabroadband superluminescent light-emitting diodes using multiple quantum-dot layer structure by rapid thermal-annealing process is reported. The device exhibits a 3 dB emission bandwidth of 146 nm centered at 984 nm with cw output power as high as 15 mW at room temperature corresponding to an extremely small coherence length of 6.6 microm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.33.001210 | DOI Listing |
The secure nature of Quantum Key Distribution (QKD) protocols makes it necessary to ensure that the single photon sources are indistinguishable. Any spectral, temporal or spatial discrepancy between the sources would lead to a breach in the security proofs of the QKD protocols. Traditional, weak-coherent pulse implementations of polarization-based QKD protocols have relied on identical photon sources obtained through tight temperature control and spectral filtering.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2022
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
Semiconductor superluminescent light-emitting diodes (SLEDs) have emerged as ideal and vital broadband light sources with extensive applications, such as optical fiber-based sensors, biomedical sensing/imaging, wavelength-division multiplexing system testing and optoelectronic systems, etc. Self-assembled quantum dots (SAQDs) are very promising candidates for the realization of broadband SLED due to their intrinsic large inhomogeneous spectral broadening. Introducing excited states (ESs) emission could further increase the spectral bandwidth.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
Applied Quantum Mechanics Laboratory, Indian Institute of Technology Bombay, Mumbai 400076, India.
Efficiency droop at high carrier-injection regimes is a matter of concern in InGaN/GaN quantum-confined heterostructure-based light-emitting diodes (LEDs). Processes such as Shockley-Reed-Hall and Auger recombinations, electron-hole wavefunction separation from polarization charges, carrier leakage, and current crowding are identified as the primary contributors to efficiency droop. Auger recombination is a critical contributor owing to its cubic dependence on carrier density, which can not be circumvented using an advanced physical layout.
View Article and Find Full Text PDFSci Adv
November 2021
Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA 94305, USA.
Computer-generated holography (CGH) holds transformative potential for a wide range of applications, including direct-view, virtual and augmented reality, and automotive display systems. While research on holographic displays has recently made impressive progress, image quality and eye safety of holographic displays are fundamentally limited by the speckle introduced by coherent light sources. Here, we develop an approach to CGH using partially coherent sources.
View Article and Find Full Text PDFOptical diffraction tomography (ODT) is a three-dimensional (3D) label-free imaging technique. The 3D refractive index distribution of a sample can be reconstructed from multiple two-dimensional optical field images via ODT. Herein, we introduce a temporally low-coherence ODT technique using a ferroelectric liquid crystal spatial light modulator (FLC SLM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!