Differentiation among malignant tumors, benign tumors, and normal tissue is highly important in the diagnosis and treatment of many malignancies. We have proposed a dynamic schema for noninvasive characterization of pressure-induced changes in solid tumors. Our hypothesis has been that the altered neovascularization processes within cancer-bearing tissues may significantly increase vascular resistance and cause a much slower response of hemoglobin concentration during a dynamic compression stimulus. This hypothesis was tested by the evaluation of data generated from human tumor clinical testing and from animal tumor model testing. In the human tumor clinical testing, a unified diagnostic criterion was derived that integrated the relative characteristics of tumor oxygen, hemoglobin, and hemoglobin dynamics. By applying such a unified criterion, we were able to differentiate benign breast lesions and malignant breast tumors with high sensitivity and specificity within a subset of 14 suspicious breast lesions with similar size and depth characteristics. In the animal testing, a stepped compression load was applied to the subcutaneous tumor deposit on an athymic NU/NU nude mouse model with subcutaneous xenograft BxPC-3 cancer. Characteristic differences were observed between the premortem tumor and the postmortem tumor in terms of pressure-induced tumor structural and functional changes.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.47.003053DOI Listing

Publication Analysis

Top Keywords

dynamic schema
8
pressure-induced changes
8
changes solid
8
solid tumors
8
tumor
8
human tumor
8
tumor clinical
8
clinical testing
8
breast lesions
8
tumors
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!