Temporal release of fatty acids and sugars in the spermosphere: impacts on Enterobacter cloacae-induced biological control.

Appl Environ Microbiol

Cornell University, Department of Plant Pathology and Plant-Microbe Biology, 334 Plant Science Building, Ithaca, New York 14853, USA.

Published: July 2008

AI Article Synopsis

  • The study examined how fatty acids and sugars are released from corn and cucumber seeds during germination, focusing on whether seed sugars can prevent the degradation of fatty acids by Enterobacter cloacae.
  • Both corn and cucumber seeds released both saturated and unsaturated fatty acids shortly after sowing, with corn seeds releasing significantly higher amounts of sugars and fatty acids compared to cucumber seeds.
  • The presence of sugars in corn seed exudate reduced the degradation rate of linoleic acid by E. cloacae, which in turn could help prevent disease development caused by Pythium ultimum.

Article Abstract

The aim of this study was to determine the temporal release of fatty acids and sugars from corn and cucumber seeds during the early stages of seed germination in order to establish whether sugars found in exudate can prevent exudate fatty acid degradation by Enterobacter cloacae. Both saturated (long-chain saturated fatty acids [LCSFA]) and unsaturated (long-chain unsaturated fatty acids [LCUFA]) fatty acids were detected in corn and cucumber seed exudates within 15 min after seed sowing. LCSFA and LCUFA were released at a rate of 26.1 and 6.44 ng/min/seed by corn and cucumber seeds, respectively. The unsaturated portion of the total fatty acid pool from both plant species contained primarily oleic and linoleic acids, and these fatty acids were released at a combined rate of 6.6 and 0.67 ng/min/seed from corn and cucumber, respectively. In the absence of seed exudate sugars, E. cloacae degraded linoleic acid at rates of 29 to 39 ng/min, exceeding the rate of total fatty acid release from seeds. Sugars constituted a significant percentage of corn seed exudate, accounting for 41% of the total dry seed weight. Only 5% of cucumber seed exudate was comprised of sugars. Glucose, fructose, and sucrose were the most abundant sugars present in seed exudate from both plant species. Corn seeds released a total of 137 microg/seed of these three sugars within 30 min of sowing, whereas cucumber seeds released 0.83 microg/seed within the same time frame. Levels of glucose, fructose, and sucrose found in corn seed exudate (90 to 342 microg) reduced the rate of linoleic acid degradation by E. cloacae to 7.5 to 8.8 ng/min in the presence of either sugar, leaving sufficient concentrations of linoleic acid to activate Pythium ultimum sporangia Our results demonstrate that elevated levels of sugars in the corn spermosphere can prevent the degradation of LCUFA by E. cloacae, leading to its failure to suppress P. ultimum sporangial activation, germination, and subsequent disease development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493187PMC
http://dx.doi.org/10.1128/AEM.00264-08DOI Listing

Publication Analysis

Top Keywords

fatty acids
24
seed exudate
20
corn cucumber
16
cucumber seeds
12
fatty acid
12
linoleic acid
12
fatty
9
sugars
9
seed
9
temporal release
8

Similar Publications

Background: Few studies have explored the relationship between macronutrient intake and sleep outcomes using daily data from mobile apps.

Objective: This cross-sectional study aimed to examine the associations between macronutrients, dietary components, and sleep parameters, considering their interdependencies.

Methods: We analyzed data from 4825 users of the Pokémon Sleep and Asken smartphone apps, each used for at least 7 days to record objective sleep parameters and dietary components, respectively.

View Article and Find Full Text PDF

Exploring the plant lipidome: techniques, challenges, and prospects.

Adv Biotechnol (Singap)

March 2024

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.

Plant lipids are a diverse group of biomolecules that play essential roles in plant architecture, physiology, and signaling. To advance our understanding of plant biology and facilitate innovations in plant-based product development, we must have precise methods for the comprehensive analysis of plant lipids. Here, we present a comprehensive overview of current research investigating plant lipids, including their structures, metabolism, and functions.

View Article and Find Full Text PDF

Partially hydrolyzed guar gum alleviates neurological deficits and gastrointestinal dysfunction in mice with traumatic brain injury.

Neurosurg Rev

January 2025

Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.

Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.

View Article and Find Full Text PDF

Background: Epoxyeicosatrienoic acids (EETs) are closely associated with lipoprotein metabolism, and changes in lipid profiles potentially affect their levels and functions. Given the alterations in lipid metabolism after cholecystectomy, this study aimed to investigate the levels of four EET regioisomers (free and esterified) and lipid profiles in patients with cholelithiasis after laparoscopic cholecystectomy (LC) and explore correlations between these parameters.

Methods: This prospective study involved 40 patients with symptomatic cholelithiasis who underwent LC.

View Article and Find Full Text PDF

Enzyme-linked immunosorbent spot analysis is frequently used to investigate immune responsiveness during clinical trials. However, ELISpot classically utilizes peripheral blood mononuclear cell isolates from whole blood, requiring relatively high blood draw volumes and removing both granulocytes and bound drug. Here, we describe a novel protocol whereby CD45 cells are magnetically isolated from human whole blood and co-incubated with serum isolated from the same subject.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!