Homeostasis of Zn(2+) and Mn(2+) is important for the physiology and virulence of the human pathogen Streptococcus pneumoniae. Here, transcriptome analysis was used to determine the response of S. pneumoniae D39 to a high concentration of Zn(2+). Interestingly, virulence genes encoding the choline binding protein PcpA, the extracellular serine protease PrtA, and the Mn(2+) uptake system PsaBC(A) were strongly upregulated in the presence of Zn(2+). Using random mutagenesis, a previously described Mn(2+)-responsive transcriptional repressor, PsaR, was found to mediate the observed Zn(2+)-dependent derepression. In addition, PsaR is also responsible for the Mn(2+)-dependent repression of these genes. Subsequently, we investigated how these opposite effects are mediated by the same regulator. In vitro binding of purified PsaR to the prtA, pcpA, and psaB promoters was stimulated by Mn(2+), whereas Zn(2+) destroyed the interaction of PsaR with its target promoters. Mutational analysis of the pcpA promoter demonstrated the presence of a PsaR operator that mediates the transcriptional effects. In conclusion, PsaR is responsible for the counteracting effects of Mn(2+) and Zn(2+) on the expression of several virulence genes in S. pneumoniae, suggesting that the ratio of these metal ions exerts an important influence on pneumococcal pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493273 | PMC |
http://dx.doi.org/10.1128/JB.00307-08 | DOI Listing |
Comput Struct Biotechnol J
December 2024
Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs.
View Article and Find Full Text PDFACS Omega
January 2025
Institute of Chemistry, UFU, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil.
Synthetic antioxidants are often introduced to biodiesel to increase its oxidative stability, and -butyl hydroquinone (TBHQ) has been selected due to its high efficiency for this purpose. The monitoring of antioxidants in biodiesel therefore provides information on the oxidative stability of biodiesels. Herein, a laser-induced graphene (LIG) electrode is introduced as a new sensor for detecting -butyl hydroquinone (TBHQ) in biodiesel samples.
View Article and Find Full Text PDFRSC Adv
January 2025
Gansu Zhongshang Food Quality Test and Detection Co., Ltd Lanzhou 730010 China.
Ferrihydrite (Fh), a widely distributed mineral in the environment, plays a crucial role in the geochemical cycling of elements. This study used experimental and computational approaches to investigate the adsorption behavior of seven heavy metal ions on Fh. The pH edge analysis revealed that the adsorption capacity followed the order: Pb > Cu > Zn > Cd > Ni > Co > Mn, with Pb showed the highest adsorption.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi' an, 710069, PR, China.
Thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid (HThz), a thiazolothiazole (TTz) derivative with carboxylic acid groups, was synthesized as a ligand for the creation of five MOFs, each associated with distinct metal ions including Ag, Mn, Co, Zn, and Cu. The cathodic electrochemiluminescence (ECL) of HThz and the resulting MOFs was investigated. HThz was found to generate ECL signals, but this process was heavily reliant on potassium persulfate (KSO) as a co-reactant.
View Article and Find Full Text PDFJ Fluoresc
January 2025
College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!