Understanding the structural basis for protein thermostability is of considerable biological and biotechnological importance as exemplified by the industrial use of xylanases at elevated temperatures in the paper pulp and animal feed sectors. Here we have used directed protein evolution to generate hyperthermostable variants of a thermophilic GH11 xylanase, EvXyn11. The Gene Site Saturation Mutagenesis (GSSM) methodology employed assesses the influence on thermostability of all possible amino acid substitutions at each position in the primary structure of the target protein. The 15 most thermostable mutants, which generally clustered in the N-terminal region of the enzyme, had melting temperatures (Tm) 1-8 degrees C higher than the parent protein. Screening of a combinatorial library of the single mutants identified a hyperthermostable variant, EvXyn11TS, containing seven mutations. EvXyn11TS had a Tm approximately 25 degrees C higher than the parent enzyme while displaying catalytic properties that were similar to EvXyn11. The crystal structures of EvXyn11 and EvXyn11TS revealed an absence of substantial changes to identifiable intramolecular interactions. The only explicable mutations are T13F, which increases hydrophobic interactions, and S9P that apparently locks the conformation of a surface loop. This report shows that the molecular basis for the increased thermostability is extraordinarily subtle and points to the requirement for new tools to interrogate protein folding at non-ambient temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M800936200 | DOI Listing |
Front Microbiol
November 2024
College of Forestry, Sichuan Agricultural University, Chengdu, China.
Rhombic-spot disease, caused mainly by , significantly impacts the yield and quality of fishscale bamboo (). Xylanases are essential for pathogenic fungi infection, yet their specific functions in the physiology and pathogenicity of remain unclear. Here, we characterized three xylanase proteins with glycosyl hydrolase 11 domains from the SICAUCC 16-0001 genome and examined the function of Nsxyn1 and Nsxyn2.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, 12120, Patumthani, Thailand.
Thermophilic xylanases catalyzing the cleavage of β-1,4-glycosidic bonds in xylan have applications in food, feed, biorefinery, and pulp industries. In this study, a hyperthermophilic endo-xylanase was obtained by further enhancement of thermal tolerance of a thermophilic GH11 xylanase originated from metagenome of bagasse pile based on rational design. Introducing N13F and Q34L to the previously reported X11P enzyme shifted the optimal working temperature to 85 °C and led to 20.
View Article and Find Full Text PDFBMC Microbiol
November 2024
Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
Poult Sci
December 2024
CJ Cheiljedang Co., Seoul 04560, Republic of Korea. Electronic address:
Xylanases require thermal stability to withstand the pelleting process, pH stability to function in the gastrointestinal tract, and resistance to xylanase inhibitors in raw materials to be effective in animal feed. A GH11 family xylanase originating from an anaerobic fungus, Orpinomyces sp. strain PC-2, has high specific activity and resistance to xylanase inhibitors intrinsically.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China. Electronic address:
The feruloyl oligosaccharides (FOs) produced by the decomposition of plant hemicellulose have broad potential applications in the food and biomedical areas. FOs were prepared through the specific enzymatic degradation of insoluble dietary fiber from different sources by cell-free GH10 and GH11 xylanases. The cell-free GH10 and GH11 xylanases were obtained by the heterologous expression in Escherichia coli.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!