Oxidative stress is implicated in the pathogenesis of cerebral ischemia injury, and the flavonoids have shown to be neuroprotective in experimental models of cerebral ischemia. Previously, we have shown that an aqueous preparation of quercetin did not reach the brain while a liposomal preparation produced measurable cerebral amounts of quercetin that reduced significantly the cerebral damage provoked by permanent middle cerebral artery occlusion (pMCAo) of rats. In this context, the protective effects of liposomal quercetin (LQ) were investigated in the same model after 1 and 4 hours of arterial occlusion. LQ was administered in a single dose (30 mg/kg), at 30 min, 1 and 4 h after pMCAo, and the brain was studied 24 h later. Cerebral damage and the oedema volume were assessed with a tetrazolium salt (TTC). The status of brain tissue, the neuronal population, the global motor behaviour as well as the antioxidant, endogenous reduced glutathione (GSH), were also assessed in the brain. Thirty min after LQ there was a significantly protective effect against ischemic lesion demonstrated by a significant increase in numbers of cells in striatum and cortex, together with a partial reversal of motor deficits. GSH levels decreased after ischemia in ipsilateral striatum and cortex, and the LQ preparation reversed these effects 24 h after the occlusion. Our results suggest that endogenous brain GSH is critical in the defense mechanisms after ischemia, as a significant mediator of the protective effects of the LQ preparation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF03033562DOI Listing

Publication Analysis

Top Keywords

liposomal preparation
8
preparation quercetin
8
cerebral ischemia
8
cerebral damage
8
protective effects
8
striatum cortex
8
brain
6
cerebral
6
preparation
5
ischemia
5

Similar Publications

Enhanced safety and efficacy profile of CD40 antibody upon encapsulation in pHe-triggered membrane-adhesive nanoliposomes.

Nanomedicine (Lond)

January 2025

Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.

Aim: To develop pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL) of CD40a to enhance anti-tumor activity in pancreatic cancer while reducing systemic toxicity.

Materials And Methods: A small library of nanoliposomes (NL) with various lipid compositions were synthesized to prepare pH (pHe)-triggered membrane adhesive nanoliposome (pHTANL). Physical and functional characterization of pHTANL-CD40a was performed via dynamic light scattering (DLS), Transmission Electron Microscopy (TEM), confocal microscopy, and flow cytometry.

View Article and Find Full Text PDF

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes.

Beilstein J Nanotechnol

December 2024

Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia.

Endosomal entrapment significantly limits the efficacy of drug delivery systems. This study investigates sodium oleate-modified liposomes (SO-Lipo) as an innovative strategy to enhance endosomal escape and improve cytosolic delivery in 4T1 triple-negative breast cancer cells. We aimed to elucidate the mechanistic role of sodium oleate in promoting endosomal escape and compared the performance of SO-Lipo with unmodified liposomes (Unmodified-Lipo) and Aurein 1.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune disease that seriously threatens human health and affects the quality of life of patients. At present, pharmacotherapy is still the mainstream treatment for RA, but most methods have shortcomings, such as poor drug targeting, a low effective drug dosage at the inflammatory site, and high systemic toxicity. The combined application of drug-loaded nanobubbles and ultrasound technology provides a new technique for the treatment of RA.

View Article and Find Full Text PDF

Objective: DSPE-mPEG2000 is a phospholipid and polyethylene glycol conjugate used in various biomedical applications, including drug delivery, gene transfection, and vaccine delivery. Due to the hydrophilic and hydrophobic properties of DSPE-mPEG2000, it can serve as a drug carrier, encapsulating drugs in liposomes to enhance stability and efficacy.

Method: In this study, long-circulating podophyllotoxin liposomes (Lc-PTOX-Lps) were prepared using DSPE-mPEG2000 as a modifying material and evaluated for their pharmacokinetics and anticancer activity.

View Article and Find Full Text PDF
Article Synopsis
  • Bile salts act as biosurfactants in the gastrointestinal tract, helping to emulsify and absorb fat-soluble nutrients and drugs.
  • The study utilized giant unilamellar vesicles (GUVs) to investigate the permeation behavior of bile salts and their mixed micelles, using sodium cholate (NaC) and various lipophilic substances.
  • Findings showed that below the critical micelle concentration (CMC), NaC causes endocytic changes in GUVs, while above the CMC, mixed micelles interact with the membrane differently, forming aggregates that migrate into the GUV, with variations observed depending on the type of lipophilic component used.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!