The melting properties of hexameric oligonucleotide AgTgAgTgAgT, in which the phosphodiester linkages of the DNA have been replaced by guanidium linkages, have been evaluated. Using the juvenile esterase gene as a target, the binding of a 20-mer DNG/DNA chimera that includes AgTgAgTgAgT is more than 10(5.7) stronger than the binding of 20-mer composed solely of DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.05.030DOI Listing

Publication Analysis

Top Keywords

binding 20-mer
8
binding properties
4
properties positively
4
positively charged
4
charged deoxynucleic
4
deoxynucleic guanidine
4
guanidine dng
4
dng agtgagtgagt
4
agtgagtgagt dng/dna
4
dng/dna chimeras
4

Similar Publications

Background: Ca release-activated Ca channel regulator 2A (CRACR2A) has been linked to immunodeficiency attributable to T-cell dysfunction in humans. We discovered that neutrophil CRACR2A promotes neutrophil adhesive and migratory functions by facilitating Ca mobilization and β2 integrin activation.

Methods: Myeloid-specific cracr2a conditional knockout mice and intravital microscopy were used to investigate the physiologic role of neutrophil cracr2a in neutrophil recruitment in vascular inflammation.

View Article and Find Full Text PDF

Protein nanoparticles are effective platforms for antigen presentation and targeting effector immune cells in vaccine development. Encapsulins are a class of protein-based microbial nanocompartments that self-assemble into icosahedral structures with external diameters ranging from 24 to 42 nm. Encapsulins from were designed to package bacterial RNA when produced in and were shown to have immunogenic and self-adjuvanting properties enhanced by this RNA.

View Article and Find Full Text PDF

Weak-cooperative binding of a long single-stranded DNA chain on a surface.

Nucleic Acids Res

August 2024

Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, via F.lli Cervi 93, 20054 Segrate (MI), Italy.

Binding gene-wide single-stranded nucleic acids to surface-immobilized complementary probes is an important but challenging process for biophysical studies and diagnostic applications. The challenge comes from the conformational dynamics of the long chain that affects its accessibility and weakens its hybridization to the probes. We investigated the binding of bacteriophage genome M13mp18 on several different 20-mer probes immobilized on the surface of a multi-spot, label-free biosensor, and observed that only a few of them display strong binding capability with dissociation constant as low as 10 pM.

View Article and Find Full Text PDF

Renalase (RNLS) is a recently discovered protein that plays an important role in the regulation of blood pressure by acting inside and outside cells. Intracellular RNLS is a FAD-dependent oxidoreductase that oxidizes isomeric forms of β-NAD(P)H. Extracellular renalase lacking its N-terminal peptide and cofactor FAD exerts various protective effects via non-catalytic mechanisms.

View Article and Find Full Text PDF

Multi-target aptamer assay for endocrine-disrupting phthalic acid ester panel screening in plastic leachates.

Chemosphere

July 2024

Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea. Electronic address:

A multi-target aptamer assay was developed as a phthalic acid ester (PAE) panel to screen selected PAEs in plastic leachate samples. The panel comprises 13 PAEs (PAE-13), namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, di-n-hexyl phthalate, diisobutyl phthalate, diisononyl phthalate, diisodecyl phthalate, mono-2-ethylhexyl phthalate, di-2-ethylhexyl phthalate, diphenyl phthalate, butyl benzyl phthalate, dicyclohexyl phthalate, and phthalic acid. Herein, we proposed an aptamer assay using a newly truncated aptamer (20-mer) and the 7-aminoactinomycin D fluorophore, which selectively binds to guanine in single-stranded DNA, resulting in increased fluorescence intensity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!