Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: A broad spectrum of cytotoxicity assays is currently used in the fields of (eco)toxicology and pharmacology. To choose an appropriate assay, different parameters like test compounds, detection mechanism, specificity, and sensitivity have to be considered. Furthermore, tissue or cell line can influence test performance. For zebrafish (Danio rerio), as emerging model organism, cell lines are now increasingly used, but few studies examined cytotoxicity in these cell systems. Therefore, we compared four cytotoxicity assays in the zebrafish liver cell line, ZFL, to test four differently acting model compounds. The tests comprised two colorimetric assays (MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and the LDH assay detecting lactate dehydrogenase activity) and two fluorometric assays (alamarBlue(R) using resazurin, and CFDA-AM based on 5-carboxyfluorescein diacetate acetoxymethyl ester). Model compounds were the pharmaceutical Tamoxifen, its metabolite 4-Hydroxy-Tamoxifen, the fungicide Flusilazole and the polycyclic aromatic hydrocarbon Benzo[a]pyrene.
Results: All four assays performed well in the ZFL cells and led to reproducible dose-response curves for all test compounds. Effective concentrations causing 10% or 50% loss of cell viability (EC10 and EC50 values) varied by a maximum factor of 7.0 for the EC10 values and a maximum factor of 1.8 for the EC50 values. The EC values were not statistically different between the four assays, which is due to the assessed unspecific effects of the compounds. However, most often, the MTT assay and LDH assay showed the highest and lowest EC values, respectively. Nevertheless, the LDH assay showed the highest intra- and inter-assay variabilities and the lowest signal-to-noise ratios. In contrast to MTT, the other three assays have the advantage of being non-destructive, easy to handle, and less time consuming. Furthermore, AB and CFDA-AM can be combined on the same set of cells without damaging the cells, allowing later on their use for the investigation of other endpoints.
Conclusion: We recommend the alamarBlue and CFDA-AM assays for cytotoxicity assessment in ZFL cells, which can be applied either singly or combined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2438350 | PMC |
http://dx.doi.org/10.1186/1471-2210-8-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!