The key to understand a protein's function often lies in its conformational dynamics. We develop a coarse-grained variational model to investigate the interplay between structural transitions, conformational flexibility, and function of the N-terminal calmodulin domain (nCaM). In this model, two energy basins corresponding to the "closed" apo conformation and "open" holo conformation of nCaM are coupled by a uniform interpolation parameter. The resulting detailed transition route from our model is largely consistent with the recently proposed EFbeta-scaffold mechanism in EF-hand family proteins. We find that the N-terminal parts of the calcium binding loops shows higher flexibility than the C-terminal parts which form this EFbeta-scaffold structure. The structural transition of binding loops I and II are compared in detail. Our model predicts that binding loop II, with higher flexibility and earlier structural change than binding loop I, dominates the open/closed conformational transition in nCaM.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2928634DOI Listing

Publication Analysis

Top Keywords

open/closed conformational
8
conformational transition
8
binding loops
8
higher flexibility
8
binding loop
8
inherent flexibility
4
flexibility protein
4
protein function
4
function open/closed
4
conformational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!