Influence of magnesium ions on spontaneous opening of DNA base pairs.

J Phys Chem B

Department of Chemistry and Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459, USA.

Published: June 2008

A large amount of experimental evidence is available for the effects of magnesium ions on the structure and the stability of the DNA double helix. Less is known, however, on how these ions affect the dynamics of the molecule and the stability of each individual base pair. The present work addresses these questions by a study of the DNA duplex [dCGCAGATCTGCG]2, and its interactions with magnesium ions using nuclear magnetic resonance (NMR) spectroscopy and proton exchange. Two-dimensional NMR experiments indicate that binding of magnesium to this DNA duplex does not affect its structure. However, even in the absence of structural changes, magnesium ions specifically affect the exchange properties of imino protons in the four GC/CG base pairs that are located in the interior of the double helix. These specific changes do not result from alterations in the rates of spontaneous opening of these base pairs. Instead, the changes most likely reflect an enhancement in the energetic propensity for spontaneous opening of the GC/CG base pairs that is induced by the binding of magnesium ions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052203PMC
http://dx.doi.org/10.1021/jp8005876DOI Listing

Publication Analysis

Top Keywords

magnesium ions
20
base pairs
16
spontaneous opening
12
double helix
8
ions affect
8
dna duplex
8
binding magnesium
8
gc/cg base
8
ions
6
base
5

Similar Publications

Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.

View Article and Find Full Text PDF

Hydrogeochemical characterization of shallow and deep groundwater for drinking and irrigation water quality index of Kathmandu Valley, Nepal.

Environ Geochem Health

January 2025

Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.

A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health.

View Article and Find Full Text PDF

Metal ions are significant ligands that bind to proteins and play crucial roles in cell metabolism, material transport, and signal transduction. Predicting the protein-metal ion ligand binding residues (PMILBRs) accurately is a challenging task in theoretical calculations. In this study, the authors employed fused amino acids and their derived information as feature parameters to predict PMILBRs using three classical machine learning algorithms, yielding favourable prediction results.

View Article and Find Full Text PDF

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

The path to survival for pathogenic organisms is not straightforward. Pathogens require a set of enzymes for tissue damage generation and to obtain nourishment, as well as a toolbox full of alternatives to bypass host defense mechanisms. Our group has shown that the parasitic protist encodes for 14 sphingomyelinases (SMases); one of them (acid sphingomyelinase 6, aSMase6) is involved in repairing membrane damage and exhibits hemolytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!