Objective: This study was undertaken to assess the effect of strontium ranelate on nonvertebral and vertebral fractures in postmenopausal women with osteoporosis in a 5-year, double-blind, placebo-controlled trial.
Methods: A total of 5,091 postmenopausal women with osteoporosis were randomized to receive either strontium ranelate at 2 gm/day or placebo for 5 years. The main efficacy criterion was the incidence of nonvertebral fractures. In addition, incidence of hip fractures was assessed, by post hoc analysis, in the subset of 1,128 patients who were at high risk of fractures (age 74 years or older with lumbar spine and femoral neck bone mineral density T scores -2.4 or less). The incidence of new vertebral fractures was assessed, using the semiquantitative method described by Genant, in the 3,646 patients in whom spinal radiography (a nonmandatory procedure) was performed during the course of the study. Fracture data were analyzed using the Kaplan-Meier survival method.
Results: Of the 5,091 patients, 2,714 (53%) completed the study up to 5 years. The risk of nonvertebral fracture was reduced by 15% in the strontium ranelate group compared with the placebo group (relative risk 0.85 [95% confidence interval 0.73-0.99]). The risk of hip fracture was decreased by 43% (relative risk 0.57 [95% confidence interval 0.33-0.97]), and the risk of vertebral fracture was decreased by 24% (relative risk 0.76 [95% CI 0.65-0.88]) in the strontium ranelate group. After 5 years, the safety profile of strontium ranelate remained unchanged compared with the 3-year findings.
Conclusion: Our findings indicate that treatment of postmenopausal osteoporosis with strontium ranelate results in a sustained reduction in the incidence of osteoporotic nonvertebral fractures, including hip fractures, and vertebral fractures over 5 years.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.23461 | DOI Listing |
Cureus
November 2024
Orthopedics and Traumatology, Santo António University Hospital Center, Porto, PRT.
Int J Biol Macromol
December 2024
Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China. Electronic address:
Magnesium oxychloride cement (MOC) has the advantage of high early strength. However, it has the defect of poor water resistance. Considering this performance, we use γ-polyglutamic acid (γ-PGA) and chitosan (CS) to modify MOC.
View Article and Find Full Text PDFBone
January 2025
Pharmacoepidemiology and Pharmacovigilance Department, Spanish Agency of Medicines and Medical Devices (AEMPS), Calle Campezo n° 1, Edificio 8, 28022 Madrid, Spain. Electronic address:
Osteoarthritis Cartilage
January 2025
Department of Radiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA; Department of Radiology, Boston VA Healthcare System, West Roxbury, MA, USA.
Objective: To review recent literature evidence describing imaging of osteoarthritis (OA) and to identify the current trends in research on OA imaging.
Method: This is a narrative review of publications in English, published between April, 2023, and March, 2024. A Pubmed search was conducted using the following search terms: osteoarthritis/OA, radiography, ultrasound/US, computed tomography/CT, magnetic resonance imaging/MRI, DXA/DEXA, and artificial intelligence/AI/deep learning.
J Nanobiotechnology
October 2024
Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan.
The prospective of percutaneous drug delivery (PDD) mechanisms to address the limitations of oral and injectable treatment for rheumatoid arthritis (RA) is increasing. These limitations encompass inadequate compliance among patients and acute gastrointestinal side effects. However, the skin's intrinsic layer can frequently hinder the percutaneous dispersion of RA medications, thus mitigating the efficiency of drug delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!