Implications of decoupling the intracellular and extracellular levels in multi-level models of virus growth.

Biotechnol Bioeng

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA.

Published: November 2008

Virus infections are characterized by two distinct levels of detail: the intracellular level describing how viruses hijack the host machinery to replicate, and the extracellular level describing how populations of virus and host cells interact. Deterministic, population balance models for viral infections permit incorporation of both the intracellular and extracellular levels of information. In this work, we identify assumptions that lead to exact, selective decoupling of the interaction between the intracellular and extracellular levels, effectively permitting solution of first the intracellular level, and subsequently the extracellular level. This decoupling leads to (1) intracellular and extracellular models of viral infections that have been previously reported and (2) a significant reduction in the computational expense required to solve the model. However, the decoupling restricts the behaviors that can be modeled. Simulation of a previously reported multi-level model demonstrates this decomposition when the intracellular level of description consists of numerous reaction events. Additionally, examples demonstrate that viruses can persist even when the intracellular level of description cannot sustain a steady-state production of virus (i.e., has only a trivial equilibrium). We expect the combination of this modeling framework with experimental data to result in a quantitative, systems-level understanding of viral infections and cellular antiviral strategies that will facilitate controlling both these infections and antiviral strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224316PMC
http://dx.doi.org/10.1002/bit.21931DOI Listing

Publication Analysis

Top Keywords

intracellular extracellular
16
intracellular level
16
extracellular levels
12
viral infections
12
intracellular
8
level describing
8
extracellular level
8
models viral
8
level description
8
antiviral strategies
8

Similar Publications

Neurons use cell-adhesion molecules (CAMs) to interact with other neurons and the extracellular environment: the combination of CAMs specifies migration patterns, neuronal morphologies, and synaptic connections across diverse neuron types. Yet little is known regarding the intracellular signaling cascade mediating the CAM recognitions at the cell surface across different neuron types. In this study, we investigated the neural developmental role of Afadin , a cytosolic adapter protein that connects multiple CAM families to intracellular F-actin.

View Article and Find Full Text PDF

Unlabelled: Endocytic recycling of transmembrane proteins is essential to cell signaling, ligand uptake, protein traffic and degradation. The intracellular domains of many transmembrane proteins are ubiquitylated, which promotes their internalization by clathrin-mediated endocytosis. How might this enhanced internalization impact endocytic uptake of transmembrane proteins that lack ubiquitylation? Recent work demonstrates that diverse transmembrane proteins compete for space within highly crowded endocytic structures, suggesting that enhanced internalization of one group of transmembrane proteins may come at the expense of other groups.

View Article and Find Full Text PDF

P-selectin glycoprotein ligand-1 (PSGL-1), a mucin-like surface glycoprotein, is primarily expressed on lymphoid and myeloid cells. PSGL-1 has recently been identified as an HIV restriction factor, blocking HIV infectivity mainly through virion incorporation that sterically hinders virion attachment to target cells. PSGL-1 also inhibits HIV Env incorporation into virions.

View Article and Find Full Text PDF

Background: Juxtaglomerular (JG) cells are sensors that control blood pressure and fluid-electrolyte homeostasis. In response to a decrease in perfusion pressure or changes in the composition and/or volume of the extracellular fluid, JG cells release renin, which initiates an enzymatic cascade that culminates in the production of angiotensin II (Ang II), a potent vasoconstrictor that restores blood pressure and fluid homeostasis. In turn, Ang II exerts a negative feedback on renin release, thus preventing excess circulating renin and the development of hypertension.

View Article and Find Full Text PDF

Sodium MRI can measure sodium concentrations in people with multiple sclerosis, but the extent to which these alterations reflect metabolic dysfunction in the absence of tissue damage or neuroaxonal loss remains uncertain. Increases in total sodium concentration and extracellular sodium concentration are believed to be indicative of tissue disruption and extracellular space expansion. Conversely, increase in intracellular sodium concentration may represent early and transient responses to neuronal insult, preceding overt tissue damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!