Age-related macular degeneration (AMD) is a prevalent multifactorial disorder of the central retina. Genetic variants at two chromosomal loci, 1q31 and 10q26, confer major disease risks, together accounting for more than 50% of AMD pathology. Signals at 10q26 center over two nearby genes, ARMS2 (age-related maculopathy susceptibility 2, also known as LOC387715) and HTRA1 (high-temperature requirement factor A1), suggesting two equally probable candidates. Here we show that a deletion-insertion polymorphism in ARMS2 (NM_001099667.1:c.(*)372_815del443ins54) is strongly associated with AMD, directly affecting the transcript by removing the polyadenylation signal and inserting a 54-bp element known to mediate rapid mRNA turnover. As a consequence, expression of ARMS2 in homozygous carriers of the indel variant is not detectable. Confirming previous findings, we demonstrate a mitochondrial association of the normal protein and further define its retinal localization to the ellipsoid region of the photoreceptors. Our data suggest that ARMS2 has a key role in AMD, possibly through mitochondria-related pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.170DOI Listing

Publication Analysis

Top Keywords

age-related macular
8
macular degeneration
8
arms2
5
degeneration associated
4
associated unstable
4
unstable arms2
4
arms2 loc387715
4
loc387715 mrna
4
mrna age-related
4
amd
4

Similar Publications

Purpose: To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice.

Methods: Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro.

View Article and Find Full Text PDF

Comprehensive multimodal imaging is essential for the precise clinical diagnostics of neovascular age-related macular degeneration (nAMD). Noninvasive optical coherence tomography (OCT) is of prime importance regarding the baseline examination, follow-up and monitoring during treatment. The OCT imaging in nAMD eyes enables a high-resolution assessment of the retinal micromorphology, which can be considerably disturbed in different layers.

View Article and Find Full Text PDF

Absent in melanoma 2: a potent suppressor of retinal pigment epithelial-mesenchymal transition and experimental proliferative vitreoretinopathy.

Cell Death Dis

January 2025

Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.

View Article and Find Full Text PDF

The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!