Background And Purpose: Rho-kinase (ROK)-mediated Ca2+ sensitization of vascular smooth muscle (VSM) contraction plays a pivotal role in cerebral vasospasm (CV). We previously demonstrated that sphingosylphosphorylcholine (SPC) induces Ca2+ sensitization through sequential activation of the Src family protein tyrosine kinases (Src-PTKs) and ROK in vitro, and that Ca2+ sensitization is inhibited by eicosapentaenoic acid (EPA) through the selective inactivation of Src-PTK. In this study, we examined whether SPC induced CV in vivo, and, if it did, whether EPA would inhibit CV, as induced by SPC or in an in vivo model of subarachnoid hemorrhage (SAH).

Methods: Changes in the diameter of the canine basilar artery were investigated by angiography after administering SPC into the cisterna magna. Then, Y27632, a specific Rho-kinase inhibitor, or EPA was injected intracisternally and the effects of both agents were investigated. In another experiment using a single-hemorrhage model, Y27632 or EPA was injected on day 7 after SAH and the changes in the diameter of the canine basilar artery were investigated.

Results: At cerebrospinal fluid concentrations of 100 and 300 micromol/l, SPC induced severe vasoconstriction (maximum vasoconstriction by SPC (100 micromol/l): 61.8 +/- 8.2%), which was markedly reversed by Y27632 (96.3 +/- 4.4%) or EPA (92.6 +/- 12.8%). SAH caused severe vasospasm on day 7 (67.6 +/- 7.8%), which was significantly blocked by Y27632 (95.5 +/- 10.6%) or EPA (90.0 +/- 4.4%).

Conclusions: SPC is a novel mediator of ROK-induced CV in vivo. The inhibition of CV induced by SPC or after SAH by EPA suggests beneficial roles of EPA in the treatment of CV. Our findings are compatible with the notion that the SPC-ROK pathway may be involved in CV.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000135650DOI Listing

Publication Analysis

Top Keywords

ca2+ sensitization
12
eicosapentaenoic acid
8
cerebral vasospasm
8
subarachnoid hemorrhage
8
spc
8
epa
8
spc induced
8
induced spc
8
changes diameter
8
diameter canine
8

Similar Publications

In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.

View Article and Find Full Text PDF

Action potential-independent spontaneous microdomain Ca transients-mediated continuous neurotransmission regulates hyperalgesia.

Proc Natl Acad Sci U S A

January 2025

Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.

Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.

View Article and Find Full Text PDF

Radiotherapy is a powerful tumor therapeutic strategy for gastric cancer patients. However, radioresistance is a major obstacle to kill cancer cells. Ginger ( Roscoe) exerts a potential function in various cancers and is a noble combined therapy to overcome radioresistance in gastric cancer radiotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • Ion channels play a crucial role in regulating ion flow across cell membranes and have become a key focus in cancer therapy due to their influence on cancer cell behaviors like proliferation and drug resistance.
  • Dysregulated ion channels, such as abnormal sodium and potassium channels, are linked to chemotherapy sensitivity, while calcium channels contribute to resistance in specific lung cancer types, and ferrous ions can make breast cancer cells more susceptible to treatment.
  • The review highlights the potential of using ion channel blockers or modulators to improve the effectiveness of anticancer drugs and presents a hopeful strategy for addressing drug resistance in cancer treatments.
View Article and Find Full Text PDF

Temporomandibular disorder (TMD) is the most prevalent painful condition in the craniofacial area. Recent studies have suggested that external or intrinsic trauma to the temporomandibular joint (TMJ) is associated with the onset of painful TMD in patients. Here, we investigated the effects of TMJ trauma through forced-mouth opening (FMO) in mice to determine pain behaviors and peripheral sensitization of trigeminal nociceptors in both sexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!