From endocytosis to tumors through asymmetric cell division of stem cells.

Curr Opin Cell Biol

Department of Biochemistry, University of Geneva, Sciences II, Quai E. Ansermet 30, 1211 Geneva, Switzerland.

Published: August 2008

Recent studies in vertebrate and invertebrate model organisms uncover the importance of endocytosis for biased signaling during asymmetric cell division. In stem cells, perturbing polarity and asymmetric division affect their selfrenewal causing exponential proliferation, thereby giving rise to cancer. An emerging pattern is that endocytosis controls asymmetric cell division, which underlies stem cell selfrenewal and defective selfrenewal is on the basis of tumorigenesis caused by cancer stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceb.2008.03.007DOI Listing

Publication Analysis

Top Keywords

asymmetric cell
12
cell division
12
stem cells
12
division stem
8
endocytosis tumors
4
asymmetric
4
tumors asymmetric
4
cell
4
division
4
stem
4

Similar Publications

Structural basis of human VANGL-PRICKLE interaction.

Nat Commun

January 2025

State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.

Planar cell polarity (PCP) is an evolutionarily conserved process for development and morphogenesis in metazoans. The well-organized polarity pattern in cells is established by the asymmetric distribution of two core protein complexes on opposite sides of the cell membrane. The Van Gogh-like (VANGL)-PRICKLE (PK) pair is one of these two key regulators; however, their structural information and detailed functions have been unclear.

View Article and Find Full Text PDF

In the spore-forming bacterium Bacillus subtilis transcription and translation are uncoupled and the translational machinery is located at the cell poles. During sporulation, the cell undergoes morphological changes including asymmetric division and chromosome translocation into the forespore. However, the fate of translational machinery during sporulation has not been described.

View Article and Find Full Text PDF

Its own architect: Flipping cardiolipin synthase.

Sci Adv

January 2025

Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.

Current dogma assumes that lipid asymmetry in biological membranes is actively maintained and dispensable for cell viability. The inner (cytoplasmic) membrane (IM) of is asymmetric. However, the molecular mechanism that maintains this uneven distribution is unknown.

View Article and Find Full Text PDF

The mechanisms underlying the establishment of asymmetric structures during development remain elusive. The wing of Drosophila is asymmetric along the Anterior-Posterior (AP) axis, but the developmental origins of this asymmetry is unknown. Here, we investigate the contribution of cell recruitment, a process that drives cell fate differentiation in the Drosophila wing disc, to the asymmetric shape and pattern of the adult wing.

View Article and Find Full Text PDF

Background: Our studies show that the small non-coding RNA, mir20a-3p, is neuroprotective for stroke in the acute phase and also attenuates long term cognitive decline in middle-aged female rats. Cognitive decline due to vascular diseases, such as stroke, is associated with secondary neurodegeneration in cortex and limbic structures. In this study, we assessed the volume of white matter, ventricles and regional diffusion-weighted MR imaging measures to delineate pathological tissue characteristics from the postmortem brain of stroke rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!