Background: The structural stability of peptides in solution strongly affects their binding affinities and specificities. Thus, in peptide biotechnology, an increase in the structural stability is often desirable. The present work combines two orthogonal computational techniques, Molecular Dynamics and a knowledge-based potential, for the prediction of structural stability of short peptides (< 20 residues) in solution.

Results: We tested the new approach on four families of short beta-hairpin peptides: TrpZip, MBH, bhpW and EPO, whose structural stabilities have been experimentally measured in previous studies. For all four families, both computational techniques show considerable correlation (r > 0.65) with the experimentally measured stabilities. The consensus of the two techniques shows higher correlation (r > 0.82).

Conclusion: Our results suggest a prediction scheme that can be used to estimate the relative structural stability within a peptide family. We discuss the applicability of this predictive approach for in-silico screening of combinatorial peptide libraries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427033PMC
http://dx.doi.org/10.1186/1472-6807-8-27DOI Listing

Publication Analysis

Top Keywords

structural stability
20
prediction structural
8
stability short
8
short beta-hairpin
8
beta-hairpin peptides
8
molecular dynamics
8
dynamics knowledge-based
8
computational techniques
8
experimentally measured
8
stability
5

Similar Publications

Coumarin Analogues as Promising Anti-Obesity Agents: In Silico Design, Synthesis, and In Vitro Pancreatic Lipase Inhibitory Activity.

Chem Biol Drug Des

January 2025

Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, Rajasthan, India.

A set of coumarin-3-carboxamide analogues were designed, synthesized, and evaluated for their ability to impede pancreatic lipase (PL) activity. Out of all the analogues, 5dh and 5de demonstrated promising inhibitory activity against PL, as indicated by their respective IC values of 9.20 and 11.

View Article and Find Full Text PDF

To accelerate the water dissociation in the Volmer step and alleviate the destruction of bubbles to the physical structure of catalysts during the alkaline hydrogen evolution, an integrated electrode of cobalt oxide and cobalt-molybdenum oxide grown on Ni foam, named CoO-Co2Mo3O8, is designed. This integrated electrode enhances the catalyst-substrate interaction confirmed by a micro-indentation tester, and thus hinders the destruction of the physical structure of catalysts caused by bubbles. Electrochemical testing shows the occurrence of a surface reconstruction of the integrated electrode, and CoO is transformed into Co(OH)2, denoted as Co(OH)2-Co2Mo3O8.

View Article and Find Full Text PDF

Purifying membrane proteins has been the limiting step for studying their structure and function. The challenges of the process include the low expression levels in heterologous systems and the requirement for their biochemical stabilization in solution. The human voltage-gated proton channel (hH1) is a good example of that: the published protocols to express and purify hH1 produce low protein quantities at high costs, which is an issue for systematically characterizing its structure and function.

View Article and Find Full Text PDF

Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.

View Article and Find Full Text PDF

Background: Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!