Dendritic cells (DCs) play a key role in the type and course of an immune response. The manipulation of human DCs to produce therapeutic agents by transduction with viral vectors is a growing area of research. We present an investigation into the effects of adenoviral vector infection on human DCs and other cell types, and on their subsequent ability to induce T-cell proliferation. We show that infection with replication-deficient adenovirus results in impaired proliferation of T cells in a mixed lymphocyte reaction (MLR). We show this to be an active suppression rather than a defect in the DCs as T cells also fail to proliferate in response to phytohaemagglutinin in the presence of adenoviral vector-infected DCs. This suppression is not attributable to phenotypic changes, death or inability of the DCs to produce cytokines on stimulation. By separation of DCs from T cells, and addition of conditioned supernatants, we show that suppression is mediated by a soluble factor. Blocking of interleukin (IL)-10 but not transforming growth factor (TGF)-beta could overcome the suppressive effect in some donors, and the source of the suppressive IL-10 was lymphocytes exposed to conditioned supernatant. Together our data suggest that infection of DCs by adenoviral vectors leads to suppression of the resulting immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2612560PMC
http://dx.doi.org/10.1111/j.1365-2567.2008.02860.xDOI Listing

Publication Analysis

Top Keywords

dendritic cells
8
adenoviral vector
8
dcs
8
immune response
8
human dcs
8
dcs produce
8
dcs cells
8
cells
6
human dendritic
4
cells infected
4

Similar Publications

Programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) interactions are targets for immunotherapies aimed to reinvigorate T cell function. Recently, it was documented that PD-L1 regulates dendritic cell (DC) migration through intracellular signaling events. In this study, we find that both preclinical murine and clinically available human PD-L1 antibodies limit DC migration.

View Article and Find Full Text PDF

Cancer immunotherapies rely on CD8 cytolytic T lymphocytes (CTLs) in recognition and eradication of tumor cells via antigens presented on major histocompatibility complex class I (MHC-I) molecules. However, we observe MHC-I deficiency in human and murine urologic tumors, posing daunting challenges for successful immunotherapy. We herein report an unprecedented nanosonosensitizer of one-dimensional bamboo-like multisegmented manganese dioxide@manganese-bismuth vanadate (BMMBV) to boost multiple branches of immune responses targeting MHC-I-deficient tumors.

View Article and Find Full Text PDF

Background: Hepatitis B is a liver infection caused by HBV. Infected individuals who fail to control the viral infection develop chronic hepatitis B and are at risk of developing life-threatening liver diseases, such as cirrhosis or liver cancer. Dendritic cells (DCs) play important roles in the immune response against HBV but are functionally impaired in patients with chronic hepatitis B.

View Article and Find Full Text PDF

Rare inherited diseases caused by mutations in the copper transporters (CTR1) or induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!