Evaluation of the carbene hydride mechanism in the carbon-carbon bond formation process of alkane metathesis through a DFT study.

J Am Chem Soc

Université Lyon-1, Laboratoire de Chimie-Physique Théorique, Université de Lyon, and CNRS UMR 5180 Sciences Analytiques, Bât Dirac, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.

Published: June 2008

Olefin metathesis on a silica supported tantalumhydridocarbene complex, the key carbon-carbon making process in alkane metathesis, requires a large number of elementary steps in contrast to the known olefin metathesis pathway, which corresponds to successive [2 + 2]-cycloaddition and cycloreversion steps. The direct pathway is forbidden because it requires the formation of a high energy reaction intermediates, an olefin adduct of trigonal bipyramid (TBP) geometry, where the carbene is trans to an hydride ligand. Extra low-energy steps are therefore necessary to connect the reactants to products, the key being a turnstile interconversion at the metallacyclobutane intermediates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja800474hDOI Listing

Publication Analysis

Top Keywords

process alkane
8
alkane metathesis
8
olefin metathesis
8
evaluation carbene
4
carbene hydride
4
hydride mechanism
4
mechanism carbon-carbon
4
carbon-carbon bond
4
bond formation
4
formation process
4

Similar Publications

Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.

View Article and Find Full Text PDF

Crude oil pollution of soil is an important issue that has serious effects on both the environment and human health. Phytoremediation is a promising approach to cleaning up oil-contaminated soil. In order to facilitate phytoremediation effects for oil-contaminated soil, this study set up a pot experiment to explore the co-application potentiality of L.

View Article and Find Full Text PDF

Preparation, Thermal Properties and Decomposition Course of Highly Resistant Potato Starch Graft Poly(Cinnamyl Methacrylate) Materials.

Molecules

January 2025

Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33 Street, 20-614 Lublin, Poland.

The properties of starch graft poly(cinnamyl methacrylate) copolymers were presented. The "grafting from" method and different ratios of starch to methacrylic monomer were used. The copolymers with the maximum grafting percent (G: 55.

View Article and Find Full Text PDF

Five representatives of a novel type of di(hydroperoxy)alkane adducts of phosphine oxides have been synthesized and fully characterized, including their solubility in organic solvents. The phosphine oxide CyPO () has been used in combination with the corresponding aldehydes to create the adducts CyPO·(HOO)CHCH (), CyPO·(HOO)CHCHCH (), CyPO·(HOO)CH(CH)CH (), CyPO·(HOO)CH(CH)CH (), and CyPO·(HOO)CH(CH)CH (). All adducts crystallize easily and contain the peroxide and phosphine oxide hydrogen-bonded in 1:1 ratios.

View Article and Find Full Text PDF

Nowadays, several processes to enrich desired bioactive compounds in plant extracts have been developed. The objective of the present study was to assess the performance of bovine serum albumin in increasing the extractive yields of anthraquinones and diarylheptanoids from their respective raw plant powder extracts. Aloe emodin, rhein, emodin, and chrysophanol, from , , , and , and curcumin from were analyzed in parent dry extracts, solubilized either with water, ethanol, or hydro-alcoholic mixtures, and in ones treated with aqueous solutions of bovine serum albumin by HPLC with UV/Vis detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!