Do two mutually exclusive gene modules define the phenotypic diversity of mammalian smooth muscle?

Mol Genet Genomics

Institution for Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, Bruna stråket 16, Gothenburg, Sweden.

Published: August 2008

Smooth muscle cells (SMCs) are key components of all hollow organs, where they perform contractile, synthetic and other functions. Unlike other muscle cells, SMCs are not terminally differentiated, but exhibit considerable phenotypic variation. Such variation is manifested both across disease states such as asthma and atherosclerosis, and physiological states such as pregnancy and wound healing. While there has been considerable investigation into the diversity of SMCs at the level of morphology and individual biomarkers, less is known about the diversity of SMCs at the level of the transcriptome. To explore this question, we performed an extensive statistical analysis that integrates 200 transcriptional profiles obtained in different SMC phenotypes and reference tissues. Our results point towards a non-trivial hypothesis: that transcriptional variation in different SMC phenotypes is characterized by coordinated differential expression of two mutually exclusive (anti-correlating) gene modules. The first of these modules (C) encodes 19 co-transcribed cell cycle associated genes, whereas the other module (E) encodes 41 co-transcribed extra-cellular matrix components. We propose that the positioning of smooth muscle cells along the C/E axis constitutes an important determinant of SMC phenotypes. In conclusion, our study introduces a new approach to assess phenotypic variation in smooth muscle cells, and is relevant as an example of how integrative bioinformatics analysis can shed light on not only terminal differentiated states but also subtler details in phenotypic variability. It also raises the broader question whether coordinated expression of gene modules is a common mechanism underlying phenotypic variability in mammalian cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-008-0349-yDOI Listing

Publication Analysis

Top Keywords

muscle cells
16
gene modules
12
smooth muscle
12
smc phenotypes
12
mutually exclusive
8
cells smcs
8
phenotypic variation
8
diversity smcs
8
smcs level
8
encodes co-transcribed
8

Similar Publications

miR-449a/miR-340 reprogram cell identity and metabolism in fusion-negative rhabdomyosarcoma.

Cell Rep

January 2025

Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy. Electronic address:

Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs).

View Article and Find Full Text PDF

Efficient Gene Delivery Admitted by small Metabolites Specifically Targeting Astrocytes in the Mouse Brain.

Mol Ther

January 2025

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:

The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.

View Article and Find Full Text PDF

Epigenetic regulation and post-translational modifications of ferroptosis-related factors in cardiovascular diseases.

Clin Epigenetics

January 2025

Department of Ultrasound, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, 33 Wenyi Road, Shenhe District, Shenyang, 110067, People's Republic of China.

As an important element of the human body, iron participates in numerous physiological and biochemical reactions. In the past decade, ferroptosis (a form of iron-dependent regulated cell death) has been reported to contribute to the pathogenesis and progression of various diseases. The stability of iron in cardiomyocytes is crucial for the maintenance of normal physiological cardiac activity.

View Article and Find Full Text PDF

Protocol for the three-dimensional analysis of rodent skeletal muscle.

STAR Protoc

January 2025

Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA. Electronic address:

Confocal imaging is a powerful tool capable of analyzing cellular spatial data within a given tissue. Here, we present a protocol for preparing optically cleared extensor digitorum longus (EDL) skeletal muscle samples suitable for confocal imaging/computational analysis. We describe steps for sample preparation (including perfusion fixation and tissue clearing of muscle samples), image acquisition, and computational analysis, with sample segmentation/3D rendering outlined.

View Article and Find Full Text PDF

Visualizing lipid nanoparticle trafficking for mRNA vaccine delivery in non-human primates.

Mol Ther

January 2025

Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; Cambridge, MA, USA, 02139; Howard Hughes Medical Institute; Chevy Chase, MD, USA, 20815; Department of Materials Science of Engineering; Massachusetts Institute of Technology; Cambridge, MA, USA, 02139. Electronic address:

mRNA delivered using lipid nanoparticles (LNPs) has become an important subunit vaccine modality, but mechanisms of action for mRNA vaccines remain incompletely understood. Here, we synthesized a metal chelator-lipid conjugate enabling positron emission tomography (PET) tracer labeling of LNP/mRNA vaccines for quantitative visualization of vaccine trafficking in live mice and non-human primates (NHPs). Following i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!