Background: The dead-end (Dnd1) gene is essential for maintaining the viability of germ cells. Inactivation of Dnd1 results in sterility and testicular tumors. The Dnd1 encoded protein, DND1, is able to bind to the 3'-untranslated region (UTR) of messenger RNAs (mRNAs) to displace micro-RNA (miRNA) interaction with mRNA. Thus, one function of DND1 is to prevent miRNA mediated repression of mRNA. We report that DND1 interacts specifically with APOBEC3. APOBEC3 is a multi-functional protein. It inhibits retroviral replication. In addition, recent studies show that APOBEC3 interacts with cellular RNA-binding proteins and to mRNA to inhibit miRNA-mediated repression of mRNA.

Methodology/principal Findings: Here we show that DND1 specifically interacts with another cellular protein, APOBEC3. We present our data which shows that DND1 co-immunoprecipitates APOBEC3 from mammalian cells and also endogenous APOBEC3 from mouse gonads. Whether the two proteins interact directly remains to be elucidated. We show that both DND1 and APOBEC3 are expressed in germ cells and in the early gonads of mouse embryo. Expression of fluorescently-tagged DND1 and APOBEC3 indicate they localize to the cytoplasm and when DND1 and APOBEC3 are expressed together in cells, they sequester near peri-nuclear sites.

Conclusions/significance: The 3'-UTR of mRNAs generally encode multiple miRNA binding sites as well as binding sites for a variety of RNA binding proteins. In light of our findings of DND1-APOBEC3 interaction and taking into consideration reports that DND1 and APOBEC3 bind to mRNA to inhibit miRNA mediated repression, our studies implicate a possible role of DND1-APOBEC3 interaction in modulating miRNA-mediated mRNA repression. The interaction of DND1 and APOBEC3 could be one mechanism for maintaining viability of germ cells and for preventing germ cell tumor development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2384002PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002315PLOS

Publication Analysis

Top Keywords

dnd1 apobec3
20
germ cells
16
dnd1
14
apobec3
12
apobec3 expressed
12
expressed germ
8
dead-end dnd1
8
maintaining viability
8
viability germ
8
mirna mediated
8

Similar Publications

Apolipoprotein B mRNA Editing Enzyme, Catalytic Polypeptide-Like Gene Expression, RNA Editing, and MicroRNAs Regulation.

Methods Mol Biol

July 2018

Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California in San Francisco, 600 16th Street Mission Bay/Genentech Hall, Room N212, San Francisco, CA, 94143, USA.

Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) protein family is encoded by eleven genes located in human genome. APOBECs are a family of evolutionarily conserved cytidine deaminases in vertebrates, and particularly in mammals. APOBECs play key roles in innate immunity against viral infection and retrotransposons.

View Article and Find Full Text PDF

The RNA binding protein DEAD-END (DND1) is one of the few proteins known to regulate microRNA (miRNA) activity at the level of miRNA-mRNA interaction. DND1 blocks miRNA interaction with the 3'-untranslated region (3'-UTR) of specific mRNAs and restores protein expression. Previously, we showed that the DNA cytosine deaminase, APOBEC3 (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide like 3), interacts with DND1.

View Article and Find Full Text PDF

Background: The dead-end (Dnd1) gene is essential for maintaining the viability of germ cells. Inactivation of Dnd1 results in sterility and testicular tumors. The Dnd1 encoded protein, DND1, is able to bind to the 3'-untranslated region (UTR) of messenger RNAs (mRNAs) to displace micro-RNA (miRNA) interaction with mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!