Upon encounter with pathogens, T cells activate several defense mechanisms, one of which is the up-regulation of CD95 ligand (CD95L/FasL) which induces apoptosis in sensitive target cells. Despite expression of the CD95 receptor, however, recently activated T cells are resistant to CD95L, presumably due to an increased expression of antiapoptotic molecules. We show here that, in contrast to naive or long-term activated T cells, short-term activated T cells strongly up-regulate the caspase-8 inhibitor, cellular FLICE-inhibitory protein (c-FLIP). Intriguingly, upon activation, T cells highly induced the short splice variant c-FLIP(short), whereas expression of c-FLIP(long) was only marginally modulated. In contrast to the general view that c-FLIP transcription is controlled predominantly by nuclear factor-kappaB (NF-kappaB), induction of c-FLIP(short) in T cells was primarily mediated by the calcineurin-nuclear factor of activated T cells (NFAT) pathway. Importantly, blockage of NFAT-mediated c-FLIP expression by RNA interference or inhibition of calcineurin rendered T cells sensitive toward CD95L, as well as activation-induced apoptosis. Thus, the resistance of recently activated T cells depends crucially on induction of c-FLIP expression by the calcineurin/NFAT pathway. Our findings imply that preventing autocrine CD95L signaling by c-FLIP facilitates T-cell effector function and an efficient immune response.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2008-02-141382DOI Listing

Publication Analysis

Top Keywords

activated cells
24
cells
11
apoptosis resistance
8
short-term activated
8
c-flip expression
8
activated
6
expression
5
c-flip
5
up-regulation c-flip
4
c-flip short
4

Similar Publications

Colorectal cancer (CRC) is among the most common cancer types for both sexes. Tripartite motif 36 (TRIM36) has been reported to be aberrantly expressed in several cancer types, suggesting its involvement in cancer progression. However, the role of TRIM36 in the colorectal carcinogenesis remain unknown.

View Article and Find Full Text PDF

Stabilizing Lattice Oxygen of Bi2O3 by Interstitial Insertion of Indium for Efficient Formic Acid Electrosynthesis.

Angew Chem Int Ed Engl

January 2025

University of Electronic Science and Technology of China, State Key Laboratory of Electronic Thin Films and Integrated Devices, No. 2006, Xiyuan Avenue, High-tech Zone (West Area), 610054, Chengdu, CHINA.

Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen.

View Article and Find Full Text PDF

Background: Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models.

View Article and Find Full Text PDF

Regulation of protein production in response to physiological signals is achieved through precise control of Eukaryotic Elongation Factor 2 (eEF2), whose distinct translocase function is crucial for cell survival. Phosphorylation of eEF2 at its Thr56 (T56) residue inactivates this function in translation. Using genetically modified paralogue of a colon cancer cell line, HCT116 which carries a point mutation at Ser595-to-Alanine in the eEF2 gene we were able to create a constitutively active form of eEF2.

View Article and Find Full Text PDF

Evaluation of Silica and Bioglass Nanomaterials in Pulp-like Living Materials.

ACS Biomater Sci Eng

January 2025

Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Paris 75252, France.

Although silicon is a widespread constituent in dental materials, its possible influence on the formation and repair of teeth remains largely unexplored. Here, we studied the effect of two silicic acid-releasing nanomaterials, silica and bioglass, on a living model of pulp consisting of dental pulp stem cells seeded in dense type I collagen hydrogels. Silica nanoparticles and released silicic acid had little effect on cell viability and mineralization efficiency but impacted metabolic activity, delayed matrix remodeling, and led to heterogeneous cell distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!