Drs2p is a resident type 4 P-type ATPase (P4-ATPase) and potential phospholipid translocase of the trans-Golgi network (TGN) where it has been implicated in clathrin function. However, precise protein transport pathways requiring Drs2p and how it contributes to clathrin-coated vesicle budding remain unclear. Here we show a functional codependence between Drs2p and the AP-1 clathrin adaptor in protein sorting at the TGN and early endosomes of Saccharomyces cerevisiae. Genetic criteria indicate that Drs2p and AP-1 operate in the same pathway and that AP-1 requires Drs2p for function. In addition, we show that loss of AP-1 markedly increases Drs2p trafficking to the plasma membrane, but does not perturb retrieval of Drs2p from the early endosome back to the TGN. Thus AP-1 is required at the TGN to sort Drs2p out of the exocytic pathway, presumably for delivery to the early endosome. Moreover, a conditional allele that inactivates Drs2p phospholipid translocase (flippase) activity disrupts its own transport in this AP-1 pathway. Drs2p physically interacts with AP-1; however, AP-1 and clathrin are both recruited normally to the TGN in drs2Delta cells. These results imply that Drs2p acts independently of coat recruitment to facilitate AP-1/clathrin-coated vesicle budding from the TGN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2488278 | PMC |
http://dx.doi.org/10.1091/mbc.e08-01-0025 | DOI Listing |
Int Microbiol
November 2022
Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), 122413, India.
Infections caused by Candida albicans are rising due to increment in drug resistance and a limited arsenal of conventional antifungal drugs. Thus, elucidating the novel antifungal targets still represent an alternative that could overcome the problem of multidrug resistance (MDR). In this study, we have uncovered the distinctive effect of aminophospholipid translocase (Drs2p) deletion on major MDR mechanisms of C.
View Article and Find Full Text PDFJ Mol Biol
August 2021
Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnerhip for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK - 8000 Aarhus C, Denmark. Electronic address:
P4-ATPases define a eukaryotic subfamily of the P-type ATPases, and are responsible for the transverse flip of specific lipids from the extracellular or luminal leaflet to the cytosolic leaflet of cell membranes. The enzymatic cycle of P-type ATPases is divided into autophosphorylation and dephosphorylation half-reactions. Unlike most other P-type ATPases, P4-ATPases transport their substrate during dephosphorylation only, i.
View Article and Find Full Text PDFPLoS One
September 2020
Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan.
In eukaryotic cells, phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of the lipid bilayer. Budding yeast contains five flippases, of which Cdc50p-Drs2p and Neo1p are primarily involved in membrane trafficking in endosomes and Golgi membranes. The ANY1/CFS1 gene was identified as a suppressor of growth defects in the neo1Δ and cdc50Δ mutants.
View Article and Find Full Text PDFJ Biol Chem
July 2020
Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
ATP11C, a member of the P4-ATPase flippase, translocates phosphatidylserine from the outer to the inner plasma membrane leaflet, and maintains the asymmetric distribution of phosphatidylserine in the living cell. We present the crystal structures of a human plasma membrane flippase, ATP11C-CDC50A complex, in a stabilized E2P conformation. The structure revealed a deep longitudinal crevice along transmembrane helices continuing from the cell surface to the phospholipid occlusion site in the middle of the membrane.
View Article and Find Full Text PDFNat Commun
September 2019
Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
The heterodimeric eukaryotic Drs2p-Cdc50p complex is a lipid flippase that maintains cell membrane asymmetry. The enzyme complex exists in an autoinhibited form in the absence of an activator and is specifically activated by phosphatidylinositol-4-phosphate (PI4P), although the underlying mechanisms have been unclear. Here we report the cryo-EM structures of intact Drs2p-Cdc50p isolated from S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!