Visualization of the externalized VP2 N termini of infectious human parvovirus B19.

J Virol

Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA.

Published: August 2008

The structures of infectious human parvovirus B19 and empty wild-type particles were determined by cryoelectron microscopy (cryoEM) to 7.5-A and 11.3-A resolution, respectively, assuming icosahedral symmetry. Both of these, DNA filled and empty, wild-type particles contain a few copies of the minor capsid protein VP1. Comparison of wild-type B19 with the crystal structure and cryoEM reconstruction of recombinant B19 particles consisting of only the major capsid protein VP2 showed structural differences in the vicinity of the icosahedral fivefold axes. Although the unique N-terminal region of VP1 could not be visualized in the icosahedrally averaged maps, the N terminus of VP2 was shown to be exposed on the viral surface adjacent to the fivefold beta-cylinder. The conserved glycine-rich region is positioned between two neighboring, fivefold-symmetrically related VP subunits and not in the fivefold channel as observed for other parvoviruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493345PMC
http://dx.doi.org/10.1128/JVI.00512-08DOI Listing

Publication Analysis

Top Keywords

infectious human
8
human parvovirus
8
parvovirus b19
8
empty wild-type
8
wild-type particles
8
capsid protein
8
visualization externalized
4
externalized vp2
4
vp2 termini
4
termini infectious
4

Similar Publications

Background: Real-world COVID-19 vaccine effectiveness (VE) studies are investigating exposures of increasing complexity accounting for time since vaccination. These studies require methods that adjust for the confounding that arises when morbidities and demographics are associated with vaccination and the risk of outcome events. Methods based on propensity scores (PS) are well-suited to this when the exposure is dichotomous, but present challenges when the exposure is multinomial.

View Article and Find Full Text PDF

Cross-Cultural Sense-Making of Global Health Crises: A Text Mining Study of Public Opinions on Social Media Related to the COVID-19 Pandemic in Developed and Developing Economies.

J Med Internet Res

January 2025

Unitat de Recerca i Innovació, Gerència d'Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.

Background: The COVID-19 pandemic reshaped social dynamics, fostering reliance on social media for information, connection, and collective sense-making. Understanding how citizens navigate a global health crisis in varying cultural and economic contexts is crucial for effective crisis communication.

Objective: This study examines the evolution of citizen collective sense-making during the COVID-19 pandemic by analyzing social media discourse across Italy, the United Kingdom, and Egypt, representing diverse economic and cultural contexts.

View Article and Find Full Text PDF

Background: Numerous studies have assessed the risk of SARS-CoV-2 exposure and infection among health care workers during the pandemic. However, far fewer studies have investigated the impact of SARS-CoV-2 on essential workers in other sectors. Moreover, guidance for maintaining a safely operating workplace in sectors outside of health care remains limited.

View Article and Find Full Text PDF

Objective: To analyze the prevalence of prenatal tests of pregnant women and factors associated with variation in this prevalence in the years of the Brazilian National Health Survey 2013 and 2019.

Method: A cross-sectional study, carried out with women who underwent prenatal care, interviewed in the Brazilian National Health Survey 2013 (n = 1,851) and 2019 (n = 2,729).

Results: The most prevalent tests were urine and blood, and the least prevalent were syphilis and HIV.

View Article and Find Full Text PDF

We have demonstrated that the cellular protein M-Sec promotes the transmission of human T-cell leukemia virus type 1 (HTLV-1) in vitro and in vivo. Here, we show how HTLV-1 utilizes M-Sec for its efficient transmission. HTLV-1-infected CD4+ T cells expressed M-Sec at a higher level than uninfected CD4+ T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!