Covalent binding and tissue distribution/retention assessment of drugs associated with idiosyncratic drug toxicity.

Drug Metab Dispos

R&D Division, Drug Metabolism and Pharmacokinetics Research Laboratories, Shinagawa R&D Center, Daiichi Sankyo Co, Ltd, Tokyo, Japan.

Published: September 2008

AI Article Synopsis

  • The study investigates how a drug’s transformation into a reactive form that binds to cellular proteins can lead to harmful side effects, specifically idiosyncratic drug toxicities (IDTs).
  • Problematic drugs tend to show higher levels of covalent binding in human liver microsome studies compared to safer drugs, suggesting a risk factor for toxicity.
  • Additionally, the research indicates that in vivo studies in rats can further clarify the relationship between drug retention in tissues, specifically the liver and bone marrow, and the potential for adverse effects.

Article Abstract

Bioactivation of a drug to a reactive metabolite and its covalent binding to cellular macromolecules is believed to be involved in clinical adverse events, including idiosyncratic drug toxicities (IDTs). For the interpretation of the covalent binding data in terms of risk assessment, the in vitro and in vivo covalent binding data of a variety of drugs associated with IDTs or not were determined. Most of the "problematic" drugs, including "withdrawn" and "warning" drugs, exhibit higher human liver microsome (HLM) in vitro covalent binding yields than the "safe" drugs. Although some of the problematic drugs that are known to undergo bioactivation other than cytochrome P450-mediated oxidation exhibited only trace levels of HLM covalent binding like safe drugs, a rat in vivo covalent binding study could assess the bioactivation of such drugs. Furthermore, the tissue distribution/retention of the drugs was also examined by rat autoradiography (ARG). The residual radioactivity in the liver observed at 72 or 168 h postdose was found to be well correlated with the rat in vivo covalent binding to liver proteins; thus, the in vivo covalent binding yields of the drugs could be extrapolated from the retention profiles observed by means of ARG. Long-term retention of radioactivity in the bone marrow was observed with some drugs associated with severe agranulocytosis, suggesting a spatial relationship between the toxicity profile and drug distribution/retention. Taken together, the covalent binding and tissue distribution/retention data of the various marketed drugs obtained in the present study should be quite informative for the interpretation of data in terms of risk assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.108.021725DOI Listing

Publication Analysis

Top Keywords

covalent binding
40
vivo covalent
16
tissue distribution/retention
12
drugs
12
drugs associated
12
covalent
10
binding
9
binding tissue
8
idiosyncratic drug
8
binding data
8

Similar Publications

Background: Glycosylated hemoglobin (HbA1c) is a stable compound in human blood that covalently binds the N-terminal valine residue of the β-chain in hemoglobin A to the free aldehyde group of glucose. It can reflect the average blood glucose level of patients in the past 2 - 3 months. Therefore, the accuracy of HbA1c detection results is of great significance for the diagnosis and differential diagnosis of diabetes.

View Article and Find Full Text PDF

Non-covalent interactions of poly(ADP-ribose) (PAR) facilitate condensate formation, yet the impact of these interactions on condensate properties remains unclear. Here, we demonstrate that PAR-mediated interactions through PARP13, specifically the PARP13.2 isoform, are essential for modulating the dynamics of stress granules-a class of cytoplasmic condensates that form upon stress, including types frequently observed in cancers.

View Article and Find Full Text PDF

A Schiff base-functionalized chitosan magnetic bio-nanocomposite for efficient removal of Pb (II) and Cd (II) ions from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Chemistry, Faculty of Science, Arak University, Arak 38481-77584, Iran; Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran. Electronic address:

The rapid industrialization and human activities in catchments have posed notable global challenges in removing of heavy metal contaminants from wastewater. Here, Schiff-bases (SB) of cyanoguanidine (CG) and salicylaldehyde (SA) were covalently grafted on a magnetic nanocomposite of chitosan to form a hybrid magnetic nanostructure (FeO@CS-CGSB). The synthesized structure was characterized using various techniques such as Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), dynamic light scattering (DLS), zeta potential, and Brunauer-Emmett-Teller surface area analysis (BET).

View Article and Find Full Text PDF

A divergent two-domain structure of the anti-Müllerian hormone prodomain.

Proc Natl Acad Sci U S A

January 2025

Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.

TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.

View Article and Find Full Text PDF

Data-Driven Improvement of Local Hybrid Functionals: Neural-Network-Based Local Mixing Functions and Power-Series Correlation Functionals.

J Chem Theory Comput

January 2025

Technische Universitát Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin D-10623, Germany.

Local hybrid functionals (LHs) use a real-space position-dependent admixture of exact exchange (EXX), governed by a local mixing function (LMF). The systematic construction of LMFs has been hampered over the years by a lack of exact physical constraints on their valence behavior. Here, we exploit a data-driven approach and train a new type of "n-LMF" as a relatively shallow neural network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!