Anti-picornaviral antisense agents are part of a broader group of nucleic acid-based molecules developed for sequence-specific inhibition of translation and/or transcription of the target sequence through induced nuclease activity or physical hindrance. Three types of nucleic acid-based gene silencing molecules can be distinguished, including DNA-base antisense oligonucleotides (ASO), nucleic acid enzymes (ribozyme and DNAzyme) and double-stranded small interfering RNA (siRNA or microRNA). These antisense DNA and RNA molecules have been widely studied for gene functional studies and therapeutic purposes. In this review, we focus on drug development using ASO and siRNA strategies to inhibit picornavirus infections. The picornavirus genome organization and life cycle is described, followed by discussion of design considerations, chemical modifications and drug delivery approaches. Recent studies using antisense against picornavirus are reviewed. Finally, we compare the advantages and disadvantages of the antisense agents with those of other therapeutics, taking into consideration their limitations which need to be overcome to achieve the final goal of clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2741/3034 | DOI Listing |
Cancer Res
January 2025
Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, China.
In most solid tumors, cellular energy metabolism is primarily dominated by aerobic glycolysis, which fulfills the high demand for biomacromolecules at the expense of reduced ATP production efficiency. Elucidation of the mechanisms by which rapidly proliferating malignant cells acquire sufficient energy in this state of inefficient ATP production from glycolysis could enable development of metabolism targeted therapeutic strategies. In this study, we observed a significant association between elevated expression levels of the long non-coding RNA (lncRNA) SNHG17 and unfavorable prognosis in breast cancer (BCa).
View Article and Find Full Text PDFBioorg Chem
February 2025
Department of Chemistry, Sarojini Naidu College for Women, Kolkata 700028, India. Electronic address:
Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges.
View Article and Find Full Text PDFFront Antibiot
April 2024
Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Initiation of chromosome replication is an essential stage of the bacterial cell cycle that is controlled by the DnaA protein. With the aim of developing novel antimicrobials, we have targeted the initiation of DNA replication, using antisense peptide nucleic acids (PNAs), directed against DnaA translation. A series of anti-DnaA PNA conjugated to lysine-rich bacterial penetrating peptides (PNA-BPPs) were designed to block DnaA translation.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America.
Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock.
View Article and Find Full Text PDFBiomaterials
January 2025
Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China. Electronic address:
As a promising anti-tumor modality, photodynamic immunotherapy (PDIT) has been applied for the treatment of many solid tumors. However, tumor hypoxic condition and immunosuppressive microenvironment severely limit the treatment outcome of PDIT. Here, we have designed a hairpin tetrahedral DNA nanostructure (H-TDN)-modified bifunctional cascaded Pt single-atom nanozyme (PCFP@H-TDN) with encapsulation of the photosensitizer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!