Membrane-interaction quantitative structure--activity relationship (MI-QSAR) analyses of skin penetration enhancers.

J Chem Inf Model

New Technology Department, Global Research & Development, Avon Products, Inc., Suffern, New York 10901-5605, USA.

Published: June 2008

Membrane-interaction quantitative structure-activity relationship (MI-QSAR) models for two skin penetration enhancer data sets of 61 and 42 compounds were constructed and compared to QSAR models constructed for the same two data sets using only classic intramolecular QSAR descriptors. These two data sets involve skin penetration enhancement of hydrocortisone and hydrocortisone acetate, and the enhancers are generally similar in structure to lipids and surfactants. A new MI-QSAR descriptor, the difference in the integrated cylindrical distribution functions over the phospholipid monolayer model, in and out of the presence of the skin penetration enhancer, DeltaSigma h(r), was developed. This descriptor is dominant in the optimized MI-QSAR models of both training sets studied and greatly reduces the size and complexity of the MI-QSAR models as compared to those QSAR models developed using the classic intramolecular descriptors. The MI-QSAR models indicate that good penetration enhancers make bigger "holes" in the monolayer and are less aqueous-soluble, so as to preferentially enter the monolayer, than are poor penetration enhancers. The skin penetration enhancer thus alters the structure and organization of the monolayer. This space and time alteration in the structure and dynamics of the membrane monolayer is captured by DeltaSigma h(r) and is simplistically referred to as "holes" in the monolayer. The MI-QSAR models explain 70-80% of the variance in skin penetration enhancement across each of the two training sets and are stable predictive models using accepted diagnostic measures of robustness and predictivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci8000277DOI Listing

Publication Analysis

Top Keywords

skin penetration
24
mi-qsar models
20
penetration enhancers
12
penetration enhancer
12
data sets
12
membrane-interaction quantitative
8
relationship mi-qsar
8
penetration
8
models
8
compared qsar
8

Similar Publications

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

What Is the Optimal Geometry of Dissolving Microneedle Arrays? A Literature Review.

Pharmaceutics

January 2025

Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.

The application of dissolving microneedle arrays (DMNAs) is an emerging trend in drug and vaccine delivery as an alternative for hypodermic needles or other less convenient drug administration methods. The major benefits include, amongst others, that no trained healthcare personnel is required and that the recipient experiences hardly any pain during administration. However, for a successful drug or vaccine delivery from the DMNA, the microneedles should be inserted intact into the skin.

View Article and Find Full Text PDF

Microneedle(MN)-based drug delivery is one of the potential approaches to overcome the limitations of oral and hypodermic needle delivery. An in silico model has been developed for hollow microneedle (HMN)-based drug delivery in the skin and its subsequent absorption in the blood and tissue compartments in the presence of interstitial flow. The drug's reversible specific saturable binding to its receptors and the kinetics of reversible absorption across the blood and tissue compartments have been taken into account.

View Article and Find Full Text PDF

Pathophysiology and Treatment of Psoriasis: From Clinical Practice to Basic Research.

Pharmaceutics

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.

Psoriasis, a chronic inflammatory dermatosis, represents a significant clinical challenge due to its complex pathogenesis and the limitations of existing therapeutic strategies. Current psoriasis diagnoses are primarily clinician-dependent, with instrumental diagnostics serving as adjuncts. Ongoing research is progressively deciphering its molecular underpinnings; the future of psoriasis diagnostics may involve genetic and immunological profiling to pinpoint biomarkers, enabling more accurate and timely interventions.

View Article and Find Full Text PDF

: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!