The assessment of procedure tolerance, their efficiency at shortening of courses of dorsopathies physiotherapy to 12-14 days made possible to detect presence of unfavorable reactions to treatment in 32% of cases. Regulator of energy metabolism, included in the therapy, assists to good tolerance to shortened courses of dorsopathy rehabilitation (frequency of presence and expression degree of reaction to treatment reduced to 15%), stabilization of energy system in patients' organism, absence of hyper activation and stress of adaptive mechanisms, maintenance of compensatory abilities reserves.

Download full-text PDF

Source

Publication Analysis

Top Keywords

energy metabolism
8
[efficiency short
4
short courses
4
courses physiotherapy
4
physiotherapy energy
4
metabolism regulators
4
regulators patients
4
patients dorsopathy]
4
dorsopathy] assessment
4
assessment procedure
4

Similar Publications

The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.

View Article and Find Full Text PDF

Parasitoid wasp venoms degrade imaginal discs for successful parasitism.

Sci Adv

January 2025

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan.

Article Synopsis
  • Parasitoid wasps, a highly diverse group of animals, use their venoms to manipulate the physiology of host larvae for their benefit.
  • Researchers discovered that a specific wasp can cause the death and dysfunction of its host's tissue precursors, a process called imaginal disc degradation (IDD).
  • The study identified two venom proteins crucial for IDD, showing how the wasp's venom strategically ensures the host grows but inhibits its transformation into adulthood.
View Article and Find Full Text PDF

The chloroplast RNA-binding protein CP29A supports expression during cold acclimation.

Proc Natl Acad Sci U S A

February 2025

Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin 10115, Germany.

The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions.

View Article and Find Full Text PDF

Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.

View Article and Find Full Text PDF

Purpose Of Review: Protein intake is recognized as a key nutritional factor crucial for optimizing Metabolic Bariatric Surgery (MBS) outcomes by preventing protein malnutrition, preserving fat-free mass, and inducing satiety. This paper discusses the current evidence regarding protein intake and its impact on clinical outcomes following MBS.

Recent Findings: There are considerable gaps in the understanding of protein requirements following MBS, as existing guidelines are based on limited and inconsistent reports.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!