We have used derivatized antisense oligodeoxynucleotides both in vitro and in vivo specifically to inhibit translation of the activated human oncogene Ha-ras. The oligonucleotides (5'-CCACACCGA-3') were targeted to a region of Ha-ras mRNA including the point mutation G----T at the 12th codon which leads to a Gly----Val substitution in the ras p21 protein. They were linked to an intercalating agent and/or to a hydrophobic tail, both to increase their affinity for their mRNA target and to enhance their uptake by tumor cells. A cell-free translation system was used to demonstrate an RNase H-dependent specific inhibition of activated ras protein synthesis. 50% inhibition was observed at a concentration of 0.5 microM of the most efficient oligonucleotide (5'-substitution with an acridine derivative and 3'-substitution by a dodecanol chain). This inhibitory effect stems from a point mutation-sensitive cleavage of the mRNA and it mirrors the growth inhibition obtained with T24 bladder carcinoma cells, which carry activated Ha-ras. The proliferation of HBL100 cells (non tumorigenic human mammary cell line) which carry two copies of normal Ha-ras was unaffected. This study shows that it is possible to design antisense agents that will inactivate the mutated oncogene but not the protooncogene which is generally essential to cell survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC452764PMC
http://dx.doi.org/10.1002/j.1460-2075.1991.tb08051.xDOI Listing

Publication Analysis

Top Keywords

point mutation
8
cleavage mrna
8
ha-ras
5
short modified
4
modified antisense
4
antisense oligonucleotides
4
oligonucleotides directed
4
directed ha-ras
4
ha-ras point
4
mutation induce
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!