Self-assembly of two different hierarchical nanostructures on either side of an organic supramolecular film in one step.

Chemistry

State Key Laboratory of Coordination Chemistry, National Laboratory of Solid State Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China.

Published: September 2008

We fabricated different hierarchical organic nanostructures on each side of a supramolecular film, by using hydrogen-bonding interactions between tetrapyridylporphyrin and benzene-1,3,5-tricarboxylic acid at the H2O/CHCl3 interface. The surface of the film that faces water is composed of nanoprism arrays, whereas the surface facing CHCl3 is composed of three-dimensional sunflower-like hierarchical micro- and nanostructures. FTIR spectral evidence showed that all pyridyl groups of the tetrapyridylporphyrin hydrogen bonded to the carboxylic acid groups of 1,3,5-benzene-tricarboxylic acid. The aggregation modes of porphyrin presented in this supramolecular film were studied by UV/Vis and fluorescence spectroscopy. Moreover, each side of the film exhibits distinct soakage properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200702032DOI Listing

Publication Analysis

Top Keywords

supramolecular film
12
nanostructures side
8
film
5
self-assembly hierarchical
4
hierarchical nanostructures
4
side organic
4
organic supramolecular
4
film step
4
step fabricated
4
fabricated hierarchical
4

Similar Publications

Efficient synthesis of fluorinated triphenylenes with enhanced arene-perfluoroarene interactions in columnar mesophases.

Beilstein J Org Chem

December 2024

Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), F-67034 Strasbourg, France.

The high potential of non-covalent arene-fluoroarene intermolecular interactions in the design of liquid crystals lies in their ability to strongly promote self-assembly, improve the order and stability of the supramolecular mesophases, and enable tuneability of the optical and electronic properties, which can potentially be exploited for advanced applications in display technologies, photonic devices, sensors, and organic electronics. We recently successfully reported the straightforward synthesis of several mesogens containing four lateral aliphatic chains and derived from the classical triphenylene core self-assembling in columnar mesophases based on this paradigm. These mesogenic compounds were simply obtained in good yields by the nucleophilic substitution (SFAr) of various types of commercially available fluoroarenes with the electrophilic organolithium derivatives 2,2'-dilithio-4,4',5,5'-tetraalkoxy-1,1'-biphenyl (2Li- ).

View Article and Find Full Text PDF

Stable and Lead-Free Perovskite Hemispherical Photodetector for Vivid Fourier Imaging.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.

The filterless single-pixel imaging technology is anticipated to hold tremendous competitiveness in diverse imaging applications. Nevertheless, achieving single-pixel color imaging without a filter remains a formidable challenge. Here a lead-free perovskite hemispherical photodetector is reported for filterless single-pixel color imaging.

View Article and Find Full Text PDF

Imperfections in metal halide perovskites, such as those induced by light exposure or thermal stress, compromise device performance and stability. A key challenge is immobilizing volatile iodine produced by iodide oxidation and regenerating impurities like elemental lead and iodine. Here, we address this by integrating a redox-active supramolecular assembly of nickel octaethylporphyrin into perovskite film, functioning as both an immobilizer and redox shuttle.

View Article and Find Full Text PDF

Supramolecular Assembly Enhanced Linear and Nonlinear Chiroptical Properties of Chiral Manganese Halides.

Angew Chem Int Ed Engl

December 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China.

Chiral hybrid organic-inorganic metal halides (HOMHs) hold great promise in broad applications ranging from ferroelectrics, spintronics to nonlinear optics, owing to their broken inversion symmetry and tunable chiroptoelectronic properties. Typically, chiral HOMHs are constructed by chiral organic cations and metal anion polyhedra, with the latter regarded as optoelectronic active units. However, the primary design approaches are largely constrained to regulation of general components within structural formula.

View Article and Find Full Text PDF

Polymer Films' Residual Stress Attenuation from the Supramolecular Complexation with Ultra-Small Nanoparticles for High Resolution Nanoimprint Lithography.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Luminescent Materials and Devices &, South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy &, Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China.

Nanoimprint lithography (NIL) has been broadly applied in the fabrication of nano-patterned polymer films for cost-efficiency and high through-put; however, the intrinsic tradeoff between mechanical strength and residual stress of polymer films significantly limits the NIL resolution while the harsh processing conditions limit its versatile applications to different substrates. Herein, 1 nm metal oxide cluster, phosphotungstic acid (PTA), is used to complex with polyvinyl alcohol (PVA) for high-resolution NIL that can be operated at large-scale and mild conditions. The ultra-small size of PTA enables dense supramolecular interaction with PVA for the diminished crystallinity and accelerated chain dynamics that help relax the residual stress during film casting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!