Interfacial morphology and bond strength of self-etching adhesives to primary dentin with or without acid etching.

J Biomed Mater Res B Appl Biomater

Department of Integrated Clinical Paediatric Dentistry, School of Dentistry, University of Granada, Granada, Spain.

Published: November 2008

The aim of the study was to determine the interfacial morphology and bond strength of three current self-etching adhesives (SEAs) to primary dentin and to evaluate the effect of introducing an additional step of phosphoric acid etching. Three human primary molars were assigned to each adhesive group for testing microtensile bond strength (microTBS) and three for studying interface morphology. Groups were: group 1, Excite, a total-etch adhesive (control); group 2, Adhese (ASE); group 3, Adper-Prompt-L-Pop (APLP), and group 4: Xeno III (XE) SEAs; groups 5-7 received application of 37% phosphoric acid for 15 s before applying ASE, APLP, and XE, respectively. A class I cavity was performed in each molar to study the interface morphology. Two halves of each tooth were used for examination either by optical microscopy, using Masson's trichromic dye technique, or by scanning electron microscopy. For microTBS determination, composite/dentin bars (1 mm(2) section) were obtained from each tooth, and tested in tension until debonding. The microTBS was significantly lower in the APLP than in the rest of the groups. The performance of SEAs on primary dentin depends on the product. Inclusion of dentin pre-etching step did not significantly modify microTBS results. All SAEs achieved greater decalcification depth on etched versus nonetched dentin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.31135DOI Listing

Publication Analysis

Top Keywords

bond strength
12
primary dentin
12
interfacial morphology
8
morphology bond
8
self-etching adhesives
8
acid etching
8
seas primary
8
phosphoric acid
8
interface morphology
8
dentin
5

Similar Publications

Effect of Irrigation Solution Temperature on Bioceramic Sealer Bond Strength.

Med Sci Monit

January 2025

Department of Endodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey.

BACKGROUND Different temperature conditions can affect the efficiency of irrigation solutions and consequently the ability of canal sealers to bond to root canal walls. The aim of this endodontic study was to evaluate the effect of irrigation solutions at different temperatures on the bond strength of a bioceramic-based root canal sealer. MATERIAL AND METHODS Root canal preparations were completed through irrigation with the following solutions: Group 1 was irrigated with 5 ml NaOCl (sodium hypochlorite) +5 ml EDTA (Ethylenediamine tetra-acetic acid) (22°C); Group 2 was irrigated with 5 ml NaOCl +5 ml EDTA (37°C); Group 3 was irrigated with 5 ml NaOCl +5 ml GA (Glycolic acid) (22°C); Group 4 was irrigated with 5 ml NaOCl +5 ml GA (37°C), Group 5 was irrigated with 20 ml Dual Rinse® HEDP (Etidronate) - NaOCl mixture (22°C); and Group 6 was irrigated with 20 ml of Dual Rinse® HEDP mixture (37°C).

View Article and Find Full Text PDF

A comparative study of polydopamine vs. glass ionomer cement for adhesion mechanisms on enamel and dentin using SEM and shear bond strength evaluation.

Sci Rep

January 2025

Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.

Polydopamine (PD), inspired by the wet adhesion mechanism of mussel foot proteins, has emerged as a promising adhesive material with wide-ranging applications. This study aimed to compare the adhesive properties of PD and Glass Ionomer Cement (GIC) on enamel and dentin substrates, evaluating PD's potential as an alternative adhesive in dental practice. A total of 120 human premolars were prepared, with 80 teeth allocated for Scanning Electron Microscopy (SEM) analysis and 40 teeth reserved for shear bond strength testing.

View Article and Find Full Text PDF

Effect of Application Mode and Aging on Microtensile Bond Strength of Universal Adhesives to Enamel of Primary Teeth.

Int J Paediatr Dent

January 2025

Department of Paediatric Dentistry, Medical Centre for Dentistry, University Medical Centre Giessen and Marburg GmbH (Campus Giessen), Justus-Liebig-University, Giessen, Germany.

Background: Limited reports are available regarding bonding of universal adhesives to primary teeth' enamel.

Aim: To evaluate the effect of application mode and aging on microtensile bond strength (μTBS) of universal adhesives to primary enamel.

Design: Ninety-six human primary molars were randomly assigned to three groups: SU: Scotchbond Universal (3M); CU: Clearfil Universal Bond Quick (Kuraray Noritake); iBU: iBond Universal (Heraeus Kulzer), then subdivided according to phosphoric acid etching time into three subgroups (SG): SG1: 0s; SG2: 15s; SG3: 30s.

View Article and Find Full Text PDF

Ingeniously regulating the conformational equilibrium and ESPT mechanism of HBT-DPI by solvent environment: A novel perspective.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022 China. Electronic address:

HBT-DPI was a single-molecule multi-conformational fluorescent material and had unique applications for hydrophobic/hydrophilic mapping on large-scale heterogeneous surfaces. In this paper, the different proton transfer processes and luminescence mechanisms of HBT-DPI in Dichloromethane (DCM, no hydrogen bond (HB) receptor) and N, N-Dimethylformamide (DMF, HB receptor) solvents were systematically studied. Using the quantum chemistry method, the stable structures of HBT-DPI in two solvents were determined based on the Boltzmann distribution.

View Article and Find Full Text PDF

Inserted-B atoms modulating electronic structure of Pt enhancing hydrogen evolution under Universal-pH.

J Colloid Interface Sci

January 2025

College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108 China. Electronic address:

The development of high-performance electrocatalysts for hydrogen evolution reaction (HER) in different pH conditionsis pivotal in producing green hydrogen, but remains challenging. Herein, we regulate the p-d orbitals hybridization between B and Pt for effective and durable HER at all pH ranges by controlling the inserted B atom. Consequently, the optimized B-doped Pt catalysts with 20 at.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!