Emotional experience during early life has been shown to interfere with the development of excitatory synaptic networks in the prefrontal cortex, hippocampus, and the amygdala of rodents and primates. The aim of the present study was to investigate a developmental "homoeostatic synaptic plasticity" hypothesis and to test whether stress-induced changes of excitatory synaptic composition are counterbalanced by parallel changes of inhibitory synaptic networks. The impact of repeated early separation stress on the development of two GABAergic neuronal subpopulations was quantitatively analyzed in the brain of the semiprecocial rodent Octodon degus. Assuming that PARV- and CaBP-D28k-expression are negatively correlated to the level of inhibitory activity, the previously described reduced density of excitatory spine synapses in the dentate gyrus of stressed animals appears to be "amplified" by elevated GABAergic inhibition, reflected by reduced PARV- (down to 85%) and CaBP-D28k-immunoreactivity (down to 74%). In opposite direction, the previously observed elevated excitatory spine density in the CA1 region of stressed animals appears to be amplified by reduced inhibition, reflected by elevated CaPB-D28k-immunoreactivity (up to 149%). In the (baso)lateral amygdala, the previously described reduction of excitatory spine synapses appears to be "compensated" by reduced inhibitory activity, reflected by dramatically elevated PARV- (up to 395%) and CaPB-D28k-immunoreactivity (up to 327%). No significant differences were found in the central nucleus of the amygdala, the piriform, and somatosensory cortices and in the hypothalamic paraventricular nucleus. Thus during stress-evoked neuronal and synaptic reorganization, a homeostatic balance between excitation and inhibition is not maintained in all regions of the juvenile brain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dneu.20651DOI Listing

Publication Analysis

Top Keywords

excitatory spine
12
separation stress
8
dentate gyrus
8
basolateral amygdala
8
excitatory synaptic
8
synaptic networks
8
inhibitory activity
8
spine synapses
8
stressed animals
8
animals appears
8

Similar Publications

The orbitofrontal cortex (OFC) is a large cortical structure, expansive across anterior-posterior axes. It is essential for flexibly updating learned behaviors, and paradoxically, also implicated in inflexible and compulsive-like behaviors. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences.

View Article and Find Full Text PDF

Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.

View Article and Find Full Text PDF

Chronic itch which is primarily associated with dermatologic, systemic, or metabolic disorders is often refractory to most current antipruritic medications, thus highlighting the need for improved therapies. Oxidative damage is a novel determinant of spinal pruriceptive sensitization and synaptic plasticity. The resolution of oxidative insult by molecular hydrogen has been manifested.

View Article and Find Full Text PDF

Aims: Stroke is a major public health concern leading to high rates of death and disability worldwide, unfortunately with no effective treatment available for stroke recovery during the repair phase.

Methods: Photothrombotic stroke was induced in mice. Adeno-associated viruses (AAV) were microinjected into the peri-infarct cortex immediately after photothrombotic stroke.

View Article and Find Full Text PDF

Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!