AI Article Synopsis

  • Defensins are small peptides crucial for the innate immune system in ticks, produced by various tick species and found in different tissues.
  • This study utilized RNA interference to silence the defensin called varisin in the American dog tick, showing over 99% reduction in varisin transcript and undetectable peptide levels after silencing.
  • The results indicated a significant decrease (2-4 fold) in antimicrobial activity of the tick's hemolymph plasma, suggesting that varisin plays a major role in this antimicrobial defense.

Article Abstract

Defensins are an important component of the innate immune system of ticks. These small peptides are produced by various genera of ticks, and expressed in various tissues. In this study we used RNA interference to silence the expression of the defensin varisin produced by the hemocytes of the American dog tick, Dermacentor variabilis. Ticks were injected with double stranded varisin RNA prior to being placed on a rabbit. After feeding, the ticks were removed, bled, and the hemolymph plasma and hemocytes separated. Hemocytes were screened for the presence (or absence) of both varisin transcript and peptide. Varisin peptide was below detectable levels and the transcript showed a greater than 99% knockdown. The antimicrobial activity of the hemolymph plasma was reduced 2-4 fold compared to that of control injected ticks indicating varisin accounts for a large portion of the antimicrobial activity of the hemolymph.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10493-008-9158-6DOI Listing

Publication Analysis

Top Keywords

rna interference
8
innate immune
8
immune system
8
tick dermacentor
8
dermacentor variabilis
8
hemolymph plasma
8
antimicrobial activity
8
activity hemolymph
8
varisin
6
ticks
5

Similar Publications

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Female mosquitoes require a vertebrate blood meal to activate reproduction, transmitting numerous devastating human diseases. Vitellogenesis is a central event of female reproduction that involves the massive production of vitellogenin (Vg) in the fat body and the maturation of ovaries. This process is controlled by the steroid hormone 20-hydroxyecdysone (20E); however, its molecular regulatory basis remains not completely understood.

View Article and Find Full Text PDF

Mesenchymal stromal cells promote the formation of lung cancer organoids via Kindlin-2.

Stem Cell Res Ther

January 2025

Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.

Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.

View Article and Find Full Text PDF

The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).

View Article and Find Full Text PDF

rRNA-derived fragments (rRFs) are a class of emerging post-transcriptional regulators of gene expression likely binding to the transcripts of target genes. However, the lack of knowledge about such targets hinders our understanding of rRF functions or binding mechanisms. The paucity of resources supporting the identification of the targets of rRFs creates a bottleneck in the fast-developing field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!