The absolute rate coefficients for the gas-phase reaction of the NO3 radical with acrolein and crotonaldehyde have been measured overthe temperature range 249-330 K, using a discharge flow system and monitoring the NO3 radical by laser induced fluorescence (LIF). The obtained rate coefficients at 298 K for NO3 reactions with acrolein and crotonaldehyde were (3.30 +/- 0.39) x 10(-15) cm3 molecule(-1) s(-1) for acrolein and (1.35 +/- 0.04) x 10(-14) cm3 molecule(-1) s(-1) for crotonaldehyde, and the proposed Arrhenius expressions are k(T) = (1.72 +/- 0.5) x 10(-13) exp[(-1190 +/- 43)/T] and k(T) = (5.02 +/- 0.7) x 10(-13) exp[(-1076 +/- 47)/T], respectively, in units of cm3 molecule(-1) s(-1). In addition, the products and mechanisms were investigated using an environmental chamber/FTIR absorption system. Formaldehyde, CO, and acryloylperoxy nitrate were identified as the main products for the acrolein reaction with molar yields of 31.6 +/- 2.0, 20.9 +/- 1.9, and 47 +/- 3, respectively. In the crotonaldehyde reaction the main products detected were crotonylperoxy nitrate and CO with yields of 93.6 +/- 4.3 and 8.3 +/- 1.1, respectively. On the basis of the rate constant measured, the activation energy calculated, and the identified products, abstraction of the aldehydic H seems to be the main degradation pathway at room temperature for the reaction of acrolein with NO3. For crotonaldehyde, the mechanism is unclear on the basis of the experimental results. The atmospheric implications of the reactions in question are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es702533u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!