Measurement and implications of nonphotochemically generated superoxide in the equatorial Pacific Ocean.

Environ Sci Technol

Centre for Water and Waste Technology, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia.

Published: April 2008

Superoxide, formed by the single electron reduction of oxygen, is important due to its ability to act as a mild reductant under typical environmental conditions. Using chemiluminescence detection with the reagent methyl Cypridina luciferin analog (MCLA), we have measured superoxide at picomolar concentrations in the water column of the Costa Rica Dome (CRD) seasonal upwelling region of the eastern equatorial Pacific Ocean. After 0.45 microm filtration, superoxide decayed in a pseudofirst order manner but more slowly than expected (rate constants varied from <10(-4) to 9.7 x 10(-3) s(-1)), which we hypothesize is due to complexation of metals that could otherwise scavenge superoxide, and the noncatalytic nature of superoxide decay at subnanomolar concentrations. Depth profiles revealed a particle-associated and nonphotochemically generated source of superoxide, implicating biological processes in its production. Superoxide in surface waters exhibited a diel cycle but concentrations were comparable to those in samples stored in the dark for at least 30 min, suggesting that the nonphotochemical source may dominate over abiotic photochemical superoxide production in the CRD. Elevated concentrations of superoxide in localized zones of the ocean may promote the reduction of several biologically important trace metals, thereby increasing their solubility and potential bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es7024609DOI Listing

Publication Analysis

Top Keywords

equatorial pacific
8
pacific ocean
8
measurement implications
4
implications nonphotochemically
4
nonphotochemically generated
4
superoxide
4
generated superoxide
4
superoxide equatorial
4
ocean superoxide
4
superoxide formed
4

Similar Publications

Spatial changes in benthic community structure have been observed across natural gradients in deep-sea ecosystems, but these patterns remain under-sampled on seamounts. Here, we identify the spatial composition and distribution of coral and sponge taxa on four sides of a single central Pacific equatorial "model" seamount within the US EEZ surrounding the Howland and Baker unit of the Pacific Islands Heritage Marine National Monument. This seamount rises from 5,000 + m to mesophotic depths of 196 m, and is influenced by the Equatorial Undercurrent.

View Article and Find Full Text PDF

Extreme droughts in the Amazon Basin during cyclic ENSO events coupled with Indian Ocean Dipole modes and Tropical North Atlantic warming.

Sci Total Environ

January 2025

Programa de Pós-Graduação em Clima e Ambiente, Instituto Nacional de Pesquisas da Amazônia, Universidade do Estado do Amazonas, Av. André Araújo, 2936, Bairro Aleixo, 69060-001 Manaus, AM, Brazil.

The teleconnections between El Niño-Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and Tropical North Atlantic warming (+TNA) play a critical role in characterizing extreme drought events in the Amazon Basin (AB). This study examines the seven most recent drought extreme events up to 2023, using seasonal composites of the sea surface temperature and atmospheric variables over a five-quarter period starting at the austral spring(-1) of the year preceding that when the lowest water level at Manaus port was recorded. Two distinct patterns emerge, driven by consecutive ENSO events with opposite phases, referred to as cyclic La Niña-El Niño and cyclic El Niño-La Niña drought events.

View Article and Find Full Text PDF

Spatiotemporal variability of air-sea CO fluxes in response to El Niño-related marine heatwaves in the tropical Pacific Ocean.

Mar Environ Res

January 2025

First Institute of Oceanography and Key Laboratory of Marine Sciences and Numerical Modelling, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Regional Oceanography and Numerical Modelling, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Shandong Key Laboratory of Marine Sciences and Numerical Modeling, Qingdao, 266061, China. Electronic address:

The tropical Pacific is the largest oceanic source of carbon dioxide (CO) emissions, where persistent marine heatwaves (MHWs) frequently occur. During persistent MHW events which are associated with strong El Niño events, CO outgassing is notably reduced, however, its detailed spatiotemporal response to MHWs has not been fully characterized. In this study, we showed a high degree of consistency between CO source regions in the central and eastern tropical Pacific Ocean and the occurrence regions with average annual MHW days exceeding 45 days (co-occurring area covers 80% of the area where MHWs occur).

View Article and Find Full Text PDF

With the continuous intensification of global warming, the reduction and ultimate phase-out of coal combustion is an inevitable trend in the future global energy transformation. This study comprehensively analyzed the impact of phasing out coal combustion on global emissions and concentrations of air pollutants, radiative fluxes, meteorology and climate using Community Earth System Model 2 (CESM2). The results indicate that after the global phase-out of coal combustion, there is a marked decrease in the concentrations of sulfur dioxide (SO), nitrogen oxides (NO) and fine particulate matter (PM), with some regions experiencing a reduction of exceeding 50%.

View Article and Find Full Text PDF

Pacific Proving Grounds-Derived U and U: Potential Tracers for Western North Pacific Ocean Dynamics.

Environ Sci Technol

January 2025

Department of Environmental and Resource Engineering, Technical University of Denmark, DTU Risø Campus, DK-4000 Roskilde, Denmark.

U and U are proven to be useful tracers to investigate upper-ocean hydrodynamics due to their source-specific isotopic ratios and conservative behaviors in the open ocean. However, their application in the Pacific Ocean has been limited by scarce observations and unclear source-term information. Here, we present our observations of U and U in the western North Pacific Subtropical Gyre (NPStG), showing the presence of a source of anthropogenic U featured by a low U/U ratio (∼1 × 10), which is an order of magnitude lower than the global fallout signature (∼2 × 10).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!