Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
PGSE diffusion, 19F, 1H HOESY and 13C NMR studies for a series of [Ru(Cp*)(eta6-arene)][PF6] (1) salts are presented. The solid-state structure of [Ru(Cp*)(eta6-fluorobenzene)][PF6] (1 c) is reported. The extent of the ion pairing and the relative positions of the ions are shown to depend on the arene. For the solvent dichloromethane, new and literature PGSE data for PF6(-) salts of transition-metal, inorganic, and organic salts are compared. Taken together, these new results show that the charge distribution and the ability of the anion to approach the positively charged positions (steric effects due to molecular shape) are the determining factors in deciding the amount of ion pairing. DFT calculations of the charges in four salts of type 1, as well as in a variety of other salts, using a natural population analysis (NPA), support this view. This represents the first attempt, using experimental data, to understand, correlate, and partially explain the various degrees of ion pairing in a widely different collection of salts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200800222 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!