A new scalable reactor was developed by applying a novel mixing principle that allows the large-scale cultivation of mammalian cells simply with surface aeration using air owing to increased liquid-gas transfer compared to standard stirred-tank bioreactors. In the cylindrical vessels (50 mL-1500 L) with a helical track attached to the inside wall, the liquid moved upward onto the track as the result of orbital shaking to increase the liquid-gas interface area significantly. This typically resulted in a 5-10-fold improvement in the volumetric mass transfer coefficient (k(L)a). In a 1500-L helical track vessel with a working volume of 1000 L, a k(L)a of 10h(-1) was obtained at a shaking speed of 39 rpm. Cultivations of CHO cells in a shaken 55-L helical track bioreactor resulted in improved cell growth profiles compared to control cultures in standard systems. These results demonstrated the possibility of using these new bioreactors at scales of 1000 L or more.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2008.03.001 | DOI Listing |
Proc Natl Acad Sci U S A
December 2024
Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.
Dynamin 1 (Dyn1) GTPase, a principal driver of membrane fission during synaptic endocytosis, self-assembles into short mechanoactive helices cleaving the necks of endocytic vesicles. While structural information about Dyn1 helix is abundant, little is known about the nanoscale dynamics of the helical scaffolding at the moment of fission, complicating mechanistic understanding of Dyn1 action. To address the role of the helix dynamics in fission, we used High-Speed Atomic Force Microscopy (HS-AFM) and fluorescence microscopy to track and compare the spatiotemporal characteristics of the helices formed by wild-type Dyn1 and its K44A mutant impaired in GTP hydrolysis on minimal lipid membrane templates.
View Article and Find Full Text PDFJ Orthop Res
November 2024
Department of Orthopaedic and Trauma Surgery, Lucerne Cantonal Hospital, Lucerne, Switzerland.
Helical plates used for proximal humeral shaft fracture fixation avoid the radial nerve distally as compared to straight plates. To investigate in a human cadaveric model the biomechanical competence of straight lateral plates versus 45° helical plates used for fixation of proximal comminuted humeral shaft fractures, eight pairs of human cadaveric humeri were instrumented using either a long straight PHILOS plate (Group 1) or a 45° helical plate (Group 2) for treatment of an unstable proximal humeral shaft fracture. All specimens were tested under non-destructive quasi-static loading in axial compression, internal and external rotation, and bending in four directions.
View Article and Find Full Text PDFJ Biomech
November 2024
Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin, China. Electronic address:
Understanding temporomandibular joint (TMJ) kinematics is essential for the clinical diagnosis and treatment of TMJ disorders. Yet, a comprehensive description of mandibular motion information in patients with anterior disc displacement (ADD) is lacking. The finite helical axis (FHA) is a mathematical model describing the motion of a rigid body in space.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
The Hamlyn Centre for Robotic Surgery, Imperial College London, London, SW7 2AZ, UK.
J Appl Clin Med Phys
October 2024
Department of Physics, Universidad Nacional de Colombia, Medellín, Colombia.
Background: The installation and testing of the first Radixact with Synchrony system in Colombia marked a significant milestone in Latin America's medical landscape. There was a need to devise a robust quality assurance protocol to comprehensively evaluate both dose delivery and motion tracking accuracy. However, testing experiences under clinical conditions have not been extensively reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!