The features of topically applied suncream films depend on the applied quantities and could be modified by water immersion and air drying. The aim of this study was to investigate the effects of the aforementioned factors on physical sunscreen films and to establish the correlation between the in vitro determined Sun Protection Factor (SPF) and the microstructure of the mineral coating. The assessments were conducted by using UV spectroscopy and electron microscopy on sunscreen films applied on both synthetic membranes and human skin. The results emphasize the paramount role played by the applied quantity to produce a continuous and protecting sunscreen film. The microscopic findings show that water immersion induces mainly a compactness of the sunscreen films, whereas no significant alterations were noted after air drying. Lastly, the SPF values, measured before and after water immersion, disclose the satisfactory water resistance of the broad-spectrum physical sunscreen considered.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Nanotechnology Department, Faculty of Science, Urmia University, Urmia, Iran.
Today, active packaging has become essential to increase food safety and decrease food spoilage. In this study, the aim was to delay spoilage and increase the shelf life of rainbow fish fillets with a new hybrid nanocomposite active packaging. Packaging was fabricated with Ethylene vinyl acetate and active compounds such as rosemary extract, zinc oxide nanoparticles, and modified iron (Fe-MMT).
View Article and Find Full Text PDFFood Res Int
February 2025
Ghent University, Department of Applied Physics, Research Unit Plasma Technology (RUPT), Belgium.
Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates.
View Article and Find Full Text PDFJ Food Sci
January 2025
Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China.
Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation.
View Article and Find Full Text PDFSci Rep
December 2024
Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
One of the biggest challenges in food packaging is the creation of sustainable and eco-friendly packaging materials to shield foods from ultraviolet (UV) photochemical damage and to preserve the distinctive physical, chemical, and biological characteristics of foods throughout the supply chain. Accordingly, this study focuses on enhancing the UV shielding properties and biological activity of carboxylmethyl cellulose sodium (CMC) through modifications using zinc oxide (ZnO), copper oxide (CuO), and graphene oxide (GO) using the solution casting technique. The hybrid nanocomposites were characterized by fourier-transform infrared (FTIR) spectrophotometer, ultraviolet-visible (UV-Vis) spectrophotometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and x-ray diffraction (XRD).
View Article and Find Full Text PDFEur J Pharm Sci
February 2025
Ss. Cyril and Methodius University in Skopje, Faculty of Pharmacy, Institute of Pharmaceutical Technology, Mother Theresa 47, 1000 Skopje, North Macedonia. Electronic address:
This study leverages Fourier Transform Near-Infrared (FT-NIR) spectroscopy to monitor the coating process of pharmaceutical tablets using PVA-based TiO-free films, with talc and iron oxides as opacifiers. By employing a combination of multivariate analytical techniques, the correlation between film coating progression and film thickness was evaluated. Assessment of coating thickness for different coating levels was performed by optical microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!