Acidogenesis of food waste was studied in a 2-L reactor with semi-continuous mode operation (once-a-day feeding and draw-off) for maximum 65 days to examine optimal volatile acid compositions for biological nitrogen removal (BNR) and enhanced biological phosphorus removal (ENPR). Various operational parameters of hydraulic retention time (HRT), organic loading rate (ORL), pH and temperature were investigated for soluble chemical oxygen demand (SCOD), volatile fatty acid composition, nitrogen and phosphate. The yields (gTVFA/g VS) and the volumetric productivity (gTVFA/d L) increased with HRT from 0.26-0.32, 1.25-1.50 (at 4 days) to 0.36-0.39, 1.71-1.83 (at 12 days). However, the acetate fraction (%) decreased with HRT from 35.7-37.5 at 4 days to 23.5-25 at 12 days. The yields decreased with increase of organic loading from 0.34-0.37 at 5 g/L d to 0.29-0.30 at 13 g/L d and the productivity increased from 1.63-1.65 to 3.61-3.75. The yield and productivity were highest at 35 degrees C among 25, 35 and 45 degrees C. The yield and productivity at pH 5.5 and 6.0 were best and very similar to each other. The condition of 35 degrees C, pH 6.0, HRT 8 days, ORL 9 g/L d resulted in TVFA, SCOD, acetate and butyrate of 25, 39.5, 12 and 5.25 g/L, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2007.06.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!