A novel function of peroxiredoxin 1 (Prx-1) in apoptosis signal-regulating kinase 1 (ASK1)-mediated signaling pathway.

FEBS Lett

Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Cheoncheon-Dong 300, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, Republic of Korea.

Published: June 2008

We report a novel function of peroxiredoxin-1 (Prx-1) in the ASK1-mediated signaling pathway. Prx-1 interacts with ASK1 via the thioredoxin-binding domain of ASK1 and this interaction is highly inducible by H2O2. However, catalytic mutants of Prx1, C52A, C173A, and C52A/C173A, could not undergo H2O2 inducible interactions, indicating that the redox-sensitive catalytic activity of Prx-1 is required for the interaction with ASK1. Prx-1 overexpression inhibited the activation of ASK1, and resulted in the inhibition of downstream signaling cascades such as the MKK3/6 and p38 pathway. In Prx-1 knockdown cells, ASK1, p38, and JNK were quickly activated, leading to apoptosis in response to H2O2. These findings suggest a negative role of Prx-1 in ASK1-induced apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2008.05.015DOI Listing

Publication Analysis

Top Keywords

novel function
8
ask1-mediated signaling
8
signaling pathway
8
pathway prx-1
8
prx-1
7
ask1
5
function peroxiredoxin
4
peroxiredoxin prx-1
4
prx-1 apoptosis
4
apoptosis signal-regulating
4

Similar Publications

The study was designed to investigate the pattern of intraventricular Hemo-Dynamic Forces (HDF) and myocardial performance during exercise in Elite Cyclists (EC). Transthoracic stress echocardiography was performed on nineteen EC and thirteen age-matched sedentary controls (SC) at three incremental exercise intensities based on Heart Rate Reserve (HRR). Left Ventricular (LV) HDF were computed from echocardiography long-axis data sets using a novel technique based on endocardial boundary tracking, both in apex-base and latero-septal directions.

View Article and Find Full Text PDF

More than 470 million people globally are infected with the hookworms Ancylostoma ceylanicum and Necator americanus, resulting in an annual loss of 2.1 to 4 million disability-adjusted-life-years. Current infection management approaches are limited by modest drug efficacy, the costs associated with frequent mass drug administration campaigns, and the risk of reinfection and burgeoning drug resistance.

View Article and Find Full Text PDF

Outcomes of a transapical edge-to-edge repair system in secondary mitral regurgitation.

J Invasive Cardiol

January 2025

Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University; NHC Key Laboratory of Ischemic Heart Diseases; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences; National Clinical Research Center for Interventional Medicine, Shanghai, China.

Objectives: The ValveClamp system (Hanyu Medical Technology) is a novel transcatheter edge-to-edge repair (TEER) system designed for ease of operation; however, there is a lack of data on its application in secondary mitral regurgitation (SMR). The authors report the mid-term outcomes of TEER using the ValveClamp system in SMR.

Methods: The study prospectively analyzed consecutive severe SMR patients who underwent transapical ValveClamp implantation at 10 Chinese centers.

View Article and Find Full Text PDF

Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.

View Article and Find Full Text PDF

This study was intended to provide a novel process that fills a knowledge gap in relation to the enhancement of pulses utilization. The primary goal was to develop an experimental framework for using a high-pressure supercritical fluid extruder (SCFX) as a continuous bioreactor to produce off-flavor reduced and functionally superior pulse flours and protein concentrates in a single step. The current study focused on using SCFX processing to remove off-flavor from pulse flour and protein concentrates, enhancing the quality, acceptability, and marketability of pulse-based products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!