We describe a low-invasive gene delivery method that uses an etched atomic force microscopy (AFM) tip or nanoneedle that can be inserted into a cell nucleus without causing cellular damage. The nanoneedle is 200 nm in diameter and 6 mum in length and is operated using an AFM system. The probabilities of insertion of the nanoneedle into human mesenchymal stem cells (MSCs) and human embryonic kidney cells (HEK293) were higher than those of typical microinjection capillaries. A plasmid containing the green fluorescent protein (GFP) gene was adsorbed on a poly-L-lysine-modified nanoneedle surface, which was then inserted into primary cultured single human MSCs. A highly efficient gene delivery of over 70% was achieved in human MSCs, which compared very favorably with other major nonviral gene delivery methods (lipofection approximately 50%, microinjection approximately 10 %). The single cells expressing GFP were collected and the amount of delivered DNA in each cell was analyzed. The highest rate of expressed GFP per delivered DNA was achieved using the nanoneedle, because the nanoneedle could be inserted into the nucleus directly without causing significant cell damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2008.03.005DOI Listing

Publication Analysis

Top Keywords

gene delivery
12
single human
8
human mesenchymal
8
mesenchymal stem
8
atomic force
8
force microscopy
8
nanoneedle inserted
8
human mscs
8
delivered dna
8
nanoneedle
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!