Since the molecular cloning of the vzg-1/Edg-2/LPA1 gene, studies have attempted to characterize LPA1 receptor functionality into a single categorical role, different from the other Edg-family LPA receptors. The desire to categorize LPA1 function has highlighted its complexity and demonstrated that the LPA1 receptor does not have one absolute function throughout every system. The central nervous system is highly enriched in the LPA1 receptor, suggesting an integral role in neuronal processes. Metastatic and invasive breast cancer also appears to have LPA-mediated LPA1 receptor functions that enhance phenotypes associated with tumorigenesis. LPA1 possesses a number of motifs conserved among G protein-coupled receptors (GPCRs): a DRY-like motif, a PDZ domain, Ser/Thr predicted sites of phosphorylation, a di-leucine motif, double cysteines in the tail and conserved residues that stabilize structure and determine ligand binding. The third intracellular loop of the LPA1 receptor may be the crux of receptor signaling and attenuation with phosphorylation of Thr-236 potentially a key determinant of basal LPA1 signaling. Mutagenesis data supports the notion that Thr-236 regulates this process since mutating Thr-236 to Ala-236 increased basal and LPA-mediated serum response factor (SRF) signaling activity and Lys-236 further increased this basal signaling. Here we describe progress on defining the major functions of the LPA1 receptor, discuss a context dependent dualistic role as both a negative regulator in cancer and a proto-oncogene, outline its structural components at the molecular amino acid level and present mutagenesis data on the third intracellular loop of the receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2565514PMC
http://dx.doi.org/10.1016/j.bbalip.2008.04.007DOI Listing

Publication Analysis

Top Keywords

lpa1 receptor
28
lpa1
10
receptor
9
third intracellular
8
intracellular loop
8
mutagenesis data
8
increased basal
8
sharpening edges
4
edges understanding
4
understanding structure/function
4

Similar Publications

Sex-specific alterations in emotional behavior and neurotransmitter systems in LPA receptor-deficient mice.

Neuropharmacology

January 2025

Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain. Electronic address:

Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA-null mice of both sexes.

View Article and Find Full Text PDF

The autotaxin-lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies highlight the promise of ATX/LPAR inhibitors in combination with conventional chemotherapeutic drugs to overcome some forms of this resistance, representing a novel therapeutic strategy.

View Article and Find Full Text PDF

Molecular mechanism of ligand recognition and activation of lysophosphatidic acid receptor LPAR6.

Proc Natl Acad Sci U S A

January 2025

Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G or G protein.

View Article and Find Full Text PDF

NHERF2 regulatory function in signal transduction pathways and control of gene expression: Implications for cellular homeostasis and breast cancer.

Arch Med Res

January 2025

Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico. Electronic address:

Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα).

View Article and Find Full Text PDF

The active metabolite of vitamin D3, calcitriol (1,25D), is widely recognised for its direct anti-proliferative and pro-differentiation effects. However, 1,25D is calcaemic, which restricts its clinical use for cancer treatment. Non-calcaemic agonists of the vitamin D receptor (VDR) could be better candidates for cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!