Aim: To investigate whether resveratrol (RSV) can improve non-alcoholic fatty liver disease (NAFLD) and to find the possible mechanism.
Methods: Rats fed a high-fat diet were treated with RSV. The liver histology was observed. Hyperinsulinemic euglycemic clamp was performed to assess insulin sensitivity. Fat accumulation was induced in HepG2 cells, and the cells were treated with RSV. AMP-activated protein kinase (AMPK) phosphorylation levels were determined both in the animal study and cell study.
Results: Rats fed a high-fat diet developed abdominal obesity, NAFLD, and insulin resistance (IR), which were markedly improved by 10 weeks of RSV administration. RSV treatment prevented triacylglycerol (TG) accumulation in HepG2 cells that were incubated with high concentration of glucose and insulin. Both in vivo and in vitro studies showed that RSV treatment could promote the phosphorylation of AMPK, which in this study, suppressed 2 lipogenesis gene expressions, contributing to the improvement of NAFLD and IR.
Conclusion: The results indicated that by reducing TG accumulation and improving IR, RSV could protect the liver from NAFLD. The activation of AMPK was involved in the mechanism. RSV has the therapeutic potential for preventing or treating NAFLD and IR-related metabolic disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1745-7254.2008.00807.x | DOI Listing |
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) includes simple steatosis and metabolic dysfuncion-associated steatohepatitis (MASH), with fibrosis in MASH serving as a critical prognostic marker. This study investigates the effects of Roux-en-Y gastric bypass (RYGB) on fibrotic MASH, assessed using the fibrotic NASH index (FNI) and the non-invasive NASH detection score (NI-NASH-DS), as well as provides further data on the diagnostic accuracy of both scores.
Methods: A retrospective cohort study was conducted involving 104 individuals (91.
Int J Prev Med
December 2024
Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Affiliated Hospital of Southeast University, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, Jiangsu, China.
Background: Vitamin D (VD) deficiency and insulin resistance (IR) increase the risk of non-alcoholic fatty liver disease (NAFLD), but few studies have explored the potential mechanisms by which IR mediates the association between VD and the pathogenesis of NAFLD at the genetic level using publicly available databases.
Methods: This is a cross-sectional study, and we utilized the National Health and Nutrition Examination Survey (NHANES) dataset, as well as data from GSE200765 obtained from the Gene Expression Omnibus (GEO) website. A total of 723 individuals who had completed liver ultrasound examination and the detection of VD levels were included in the final analysis.
J Dig Dis
January 2025
Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Liver Int
February 2025
Department of Epidemiology and Data Science, Amsterdam University Medical Centres, Amsterdam, The Netherlands.
Background And Aims: The performance of non-invasive liver tests (NITs) is known to vary across settings and subgroups. We systematically evaluated whether the performance of three NITs in detecting advanced fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) varies with age, sex, body mass index (BMI), type 2 diabetes mellitus (T2DM) status or liver enzymes.
Methods: Data from 586 adult LITMUS Metacohort participants with histologically characterised MASLD were included.
Pharmaceuticals (Basel)
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia.
Fructose-driven metabolic disorders, such as obesity, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and type 2 diabetes, are significant global health challenges. Ketohexokinase C (KHK-C), a key enzyme in fructose metabolism, is a promising therapeutic target. α-Mangostin, a naturally occurring prenylated xanthone, has been identified as an effective KHK-C inhibitor, prompting exploration of its analogs for enhanced efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!