The isotropic phase dynamics of a system of 4-n-hexyl-4'-cyano-biphenyl (6CB) molecules has been studied by molecular dynamics computer simulations. We have explored the range of 275-330 K keeping the system isotropic, although supercooled under its nematic transition temperature. The weak rototranslational coupling allowed us to separately evaluate translational (TDOF) and orientational degrees of freedom (ODOF). Evidences of subdiffusive dynamics, more apparent at the lowest temperatures, are found in translational and orientational dynamics. Mean square displacement as well as self-intermediate center of mass and rotational scattering functions show a plateau, also visible in the orientational correlation function. According to the mode coupling theory (MCT), this plateau is the signature of the beta-relaxation regime. Three-time intermediate scattering functions reveal that the plateau is related to a homogeneous dynamics, more extended in time for the orientational degrees of freedom (up to 1 ns). The time-temperature superposition principle and the factorization property predicted by the idealized version of MCT hold, again for both kinds of dynamics. The temperature dependence of diffusion coefficient and orientational relaxation time is well described by a power law. Critical temperatures Tc are 244+/-6 and 258+/-6 K, respectively, the latter is some 10 K below the corresponding experimental values. The different values of Tc we obtained indicate that ODOF freezes earlier than TDOF. This appears due to the strongly anisotropic environment that surrounds a 6CB molecule, even in the isotropic phase. The lifetime of these "cages," estimated by time dependent conditional probability functions, is strongly temperature dependent, ranging from some hundreds of picoseconds at 320 K to a few nanoseconds at 275 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2916681 | DOI Listing |
J Colloid Interface Sci
December 2024
Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:
Hypothesis: Charge-stabilized colloidal cellulose nanocrystals (CNCs) can self-assemble into higher-ordered chiral nematic structures by varying the volume fraction. The assembly process exhibits distinct dynamics during the isotropic to liquid crystal phase transition, which can be elucidated using X-ray photon correlation spectroscopy (XPCS).
Experiments: Anionic CNCs were dispersed in propylene glycol (PG) and water spanning a range of volume fractions, encompassing several phase transitions.
J Chem Phys
January 2025
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
How condensed-matter simulations depend on the number of molecules being simulated (N) is sometimes itself a valuable piece of information. Liquid crystals provide a case in point. Light scattering and 2d-IR experiments on isotropic-phase samples display increasingly large orientational fluctuations ("pseudo-nematic domains") as the samples approach their nematic phase.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
PEA 46 is a biobased polymer with promising properties for sustainable packaging applications, which can be obtained via polymerization of a furan 2,5-dicarboxylic acid (2,5-FDCA) derivative and a diol monomer containing internal amide bonds (46 amido diol). In the literature, PEA 46 showed a complex series of thermal transitions during DSC scans. For this reason, in this initial exploratory study PEA 46 was subjected to compression molding and the melting behavior of film samples was investigated with parallel DSC and WAXS analyses.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Aerospace, Physics, and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA.
This study advances the state of the art by computing the macroscopic elastic properties of 2D periodic functionally graded microcellular materials, incorporating both isotropic and orthotropic solid phases, as seen in additively manufactured components. This is achieved through numerical homogenization and several novel MATLAB implementations (known in this study as , , , and ). The developed codes in the current work treat each cell as a material point, compute the corresponding cell elasticity tensor using numerical homogenization, and assign it to that specific point.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!