The isomerization and dissociation dynamics of HONO are investigated on an ab initio potential surface obtained by fitting the results of electronic structure calculations at 21 584 configurations by using previously described novelty sampling and feed-forward neural network (NN) methods. The electronic structure calculations are executed by using GAUSSIAN 98 with a 6-311G(d) basis set at the MP4(SDQ) level of accuracy. The average absolute error of the NN fits varies from 0.012 eV (1.22 kJ mol(-1)) to 0.017 eV (1.64 kJ mol(-1)). The average computation time for a HONO trajectory using a single NN surface is approximately 4.8 s. These computation times compare very favorably with those required by other methods primarily because the NN fitting needs to be executed only one time rather than at every integration point. If the average result obtained from a committee of NNs is employed at each point rather than a single NN, increased fitting accuracy can be achieved at the expense of increased computational requirements. In the present investigation, we find that a committee comprising five NN potentials reduces the average absolute interpolation error to 0.0111 eV (1.07 kJ mol(-1)). Cis-trans isomerization rates with total energy of 1.70 eV (including zero point energy) have been computed for a variety of different initial distributions of the internal energy. In contrast to results previously reported by using an empirical potential, where cis-->trans to trans-->cis rate coefficient ratios at 1.70 eV total energy were found to lie in the range of 2.0-12.9 depending on the vibration mode excited, these ratios on the ab initio NN potential lie in the range of 0.63-1.94. It is suggested that this result is a reflection of much larger intramode coupling terms present in the ab initio potential surface. A direct consequence of this increased coupling is a significant decrease in the mode specific rate enhancement when compared to results obtained by using empirical surfaces. All isomerizations are found to be first order in accordance with the results reported by using empirical potentials. The dissociation rate to NO+OH has been investigated at internal HONO energies of 3.10 and 3.30 eV for different distributions of this energy among the six vibrational modes of HONO. These dissociations are also found to be first order. The computed dissociation rate coefficients exhibit only modest mode specific rate enhancement that is significantly smaller than that obtained on an empirical surface because of the much larger mode couplings present on the ab initio surface.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2918503DOI Listing

Publication Analysis

Top Keywords

initio potential
16
potential surface
12
cis-->trans trans-->cis
8
novelty sampling
8
sampling feed-forward
8
feed-forward neural
8
neural network
8
electronic structure
8
structure calculations
8
average absolute
8

Similar Publications

Revealing the catalytic oxidation mechanism of CO on α-FeO surfaces: an thermodynamic study.

Phys Chem Chem Phys

January 2025

Institute of Nanomaterials, Faculty of Materials Science, Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People's Republic of Korea.

Significant research efforts have been devoted to improving the efficiency of catalytic carbon monoxide (CO) oxidation over α-FeO-based catalysts, but details of the underlying mechanism are still under debate. Here we apply the thermodynamic method (AITM) within the density functional theory framework to investigate the phase diagram of α-FeO(0001) surfaces with various terminations and the catalytic mechanism of CO oxidation on these surfaces. By extending the conventional AITM to consider the charge state of surface defects, we build the phase diagram of α-FeO(0001) surfaces in relation to the Fermi energy as well as the oxygen chemical potential, which makes it possible to explain the influence of point defects on the surface morphology and to predict the existence of the experimentally observed functional sites such as the ferryl group (FeO) and oxygen vacancies.

View Article and Find Full Text PDF

Activity and stability origin of core-shell catalysts: unignorable atomic diffusion behavior.

Chem Sci

January 2025

Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Henan 450001 China

The exceptional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances of core-shell catalysts are well documented, yet their activity and durability origins have been interpreted only based on the static structures. Herein we employ a NiFe alloy coated with a nitrogen-doped graphene-based carbon shell (NiFe@NC) as a model system to elucidate the active structure and stability mechanism for the ORR and OER by combining constant potential computations, molecular dynamic simulations, and experiments. The results reveal that the synergistic effects between the alloy core and carbon shell facilitate the formation of Fe-N-C active sites and replenish metal sites when central metal atoms detach.

View Article and Find Full Text PDF

Revisiting the in-plane and in-channel diffusion of lithium ions in a solid-state electrolyte at room temperature through neural network-assisted molecular dynamics simulations.

Phys Chem Chem Phys

January 2025

Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.

Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.

View Article and Find Full Text PDF

The effect of atomic vibration on thermal transport in diatomic semiconductors investigated molecular dynamics.

Nanoscale

January 2025

Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China.

Based on the molecular dynamics (AIMD), the temperature and velocity statistics of diatomic semiconductors were proposed to be classified by atomic species. The phase differences resulting from lattice vibrations of different atoms indicated the presence of anharmonicity at finite atomic temperatures. To further explore the electronic properties, the effect of temperature on electrostatic potential field vibrations in semiconductors was studied, and the concept of electrostatic potential oscillation (EPO) at finite atomic temperature was introduced.

View Article and Find Full Text PDF

The design and screening of low cost and high efficiency oxygen reduction reaction (ORR) electrocatalysts is vital in the realms of fuel cells and metal-air batteries. Existing studies largely rely on the calculation of absorption free energy, a method established 20 years ago by Jens K. Nørskov.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!