Human poisoning by azaspiracids (AZAs) has emerged as an increasing problem in Europe in recent years. Azaspiracid-2 (AZA-2) is one of the most abundant azaspiracids in nature. Although AZA-2 was recently involved in several toxic episodes leading to human intoxications, there is no information available about its mechanism of action or its cytotoxic effect in cellular models. This paper reports on the neurotoxic effect of azaspiracid-2 and its potential cellular targets. We explore the cellular and cytotoxic effects of AZA-2 and AZA-2-methyl ester (where the carboxylic acid moiety of AZA-2 was converted to the corresponding methyl ester) in cerebellar neurons. Pharmacological tools were used to analyze the role of different signal transduction pathways in the toxicity of AZA-2. The neurotoxicity of AZA-2 and AZA-2-methyl ester was developmentally regulated, exhibiting a higher cytotoxicity in younger cells (2-3 div). After excluding several signal transduction pathways, we found that inhibition of the mitogen-activated protein kinase JNK completely prevented the cytotoxic effect of AZA-2 in neurons. Furthermore, neuronal exposure to AZA-2 or AZA-2-methyl ester caused an increase in the amount of total and phosphorylated JNK and produced nuclear accumulation of the protein. The results presented here point to a common target for AZA-1 and AZA-2 and constitute the first experimental approach to investigate the cytotoxicity of AZA-2 in vitro, establishing an initial approach to probe the mechanism of action of these group of natural toxins.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.21731DOI Listing

Publication Analysis

Top Keywords

aza-2 aza-2-methyl
12
aza-2-methyl ester
12
aza-2
10
mechanism action
8
signal transduction
8
transduction pathways
8
ester
5
cytotoxic
4
cytotoxic azaspiracid-2
4
azaspiracid-2 azaspiracid-2-methyl
4

Similar Publications

Azaspiracid substituent at C1 is relevant to in vitro toxicity.

Chem Res Toxicol

September 2008

Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.

The azaspiracids are a group of marine toxins recently described that currently includes 20 analogues. Not much is known about their mechanism of action, although effects on some cellular functions have been found in vitro. We used the reported effects on cell viability, actin cytoskeleton, and caspase activation to study the structure-activity relationship of AZA-1 and AZA-2 and the role of the carboxylic acid moiety in toxicity.

View Article and Find Full Text PDF

The crystal structures of diamagnetic dichloro(2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrinato-N,N',N'')-tin(IV) methanol solvate [Sn(2-NCH 3NCTPP)Cl 2.2(0.2MeOH); 6.

View Article and Find Full Text PDF

Human poisoning by azaspiracids (AZAs) has emerged as an increasing problem in Europe in recent years. Azaspiracid-2 (AZA-2) is one of the most abundant azaspiracids in nature. Although AZA-2 was recently involved in several toxic episodes leading to human intoxications, there is no information available about its mechanism of action or its cytotoxic effect in cellular models.

View Article and Find Full Text PDF

Insertion of iron(II) into methylated derivatives of N-confused porphyrins 2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrin (MeCTPPH)H, 2-aza-5,10,15,20-tetraphenyl-21-methyl-21-carbaporphyrin (CTPPMe)H2, and 2-aza-2-methyl-5,10,15,20-tetraphenyl-21-methyl-21-carbaporphyrin (MeCTPPMe)H yielded N- or C-methylated high-spin iron(II) complexes (MeCTPPH)Fe(II)Br, (HCTPPMe)Fe(II)Br, and (MeCTPPMe)Fe(II)Br. One electron oxidation of (Me-CTPPH)Fe(II)Br using Br2, accompanied by deprotonation of a C(21)-H(21) fragment and formation of an Fe-C(21) bond, produces an intermediate-spin, five-coordinate iron(III) complex (MeCTPP)Fe(III)Br. Simultaneously, a high-spin complex [(MeCTPPH)Fe(III)Br]+ was formed which preserved the side-on interaction between the metal ion and the inverted pyrrole ring.

View Article and Find Full Text PDF

Copper(II) complexes of inverted porphyrin and its methylated derivatives.

Inorg Chem

November 2000

Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, Wrocław 53 380, Poland.

The inverted porphyrins 2-aza-5,10,15,20-tetraphenyl-21-carbaporphyrin (CTPPH2) and its methylated derivatives 2-aza-2-methyl-5,10,15,20-tetraphenyl-21-carbaporphyrin (2-NCH3CTPPH) and 2-aza-2-methyl-5,10,15,20-tetraphenyl-21-methyl-21-carbaporphyrin (2-NCH3-21-CH3CTPPH) stabilize the rare organocopper(II) complexes (CTPP)CuII (1), (2-NCH3CTPP)CuII (2), (CTPPH)CuIIX (3-X), (2-NCH3CTPPH)CuIIX (4-X) (X = Cl-, TFA), and (2-NCH3-21-CH3CTPP)CuIICl (5). The EPR spectra recorded for 1, 2, 4, and 5 revealed typical features diagnostic of the copper(II) electronic structure. The superhyperfine coupling pattern indicates a presence of three nitrogen donors in the first coordination sphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!