Intrinsic catch-up growth of hypoplastic fetal lungs is mediated by interleukin-6.

Pediatr Pulmonol

Life and Health Sciences Research Institute, ICVS, School of Health Sciences, University of Minho, Braga, Portugal.

Published: July 2008

Fetal lung hypoplasia is a common finding in several fetal conditions such as congenital diaphragmatic hernia (CDH). Interestingly, previous studies have demonstrated that hypoplastic lungs have the ability to recover to normal size, when relieved from mechanical factors. However, the underlying mechanisms remain largely unknown. Recently, interleukin-6 (IL-6) has been involved in catch-up growth phenomenon in children. Thus, we hypothesized that IL-6 could mediate fetal growth recover from hypoplastic lungs. Control and nitrofen-induced hypoplastic lung explants were cultured either in normal conditions or with IL-6 neutralizing antibodies. The total number of peripheral airway buds, epithelial perimeter, and total explant area were analyzed and daily branching rates were calculated. Additionally, IL-6 mRNA and protein expression was assessed both in qualitative (by in situ hybridization and immunohistochemistry) and in quantitative (by real-time PCR and Western blot) approaches, in control and hypoplastic lungs (nitrofen and CDH groups). Nitrofen-induced hypoplastic lungs showed in vitro, out of systemic environment, the ability to recover from hypoplasia and presented daily branching rates significantly higher than controls. Blocking IL-6 activity significantly diminished the intrinsic capacity of hypoplastic fetal lungs to recover from hypoplasia and attenuated their daily branching rates. Although more exacerbated in CDH, both nitrofen-exposed lungs presented significant IL-6 mRNA and protein over-expression throughout all studied gestational ages. The present study suggests, for the first time, that fetal lung is able to recover from growth retardation through a way that resembles the catch-up growth phenomenon, and it seems to be, at least partially, orchestrated by intrinsic mechanisms implicating IL-6.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ppul.20840DOI Listing

Publication Analysis

Top Keywords

hypoplastic lungs
16
catch-up growth
12
daily branching
12
branching rates
12
hypoplastic fetal
8
fetal lungs
8
fetal lung
8
ability recover
8
growth phenomenon
8
nitrofen-induced hypoplastic
8

Similar Publications

Double outlet right ventricle (DORV) is a rare congenital heart defect where both the aorta and pulmonary artery originate from the right ventricle, often accompanied by additional cardiac anomalies to mitigate circulatory imbalance, though such compensations usually fail. We report a 15-month-old infant with recurrent respiratory infections and poor weight gain, referred for computed tomography angiography. Physical examination showed a small, non-syndromic infant with pallor, tachypnea, irritability, and finger clubbing.

View Article and Find Full Text PDF

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease associated with microcephaly and poor neurodevelopmental outcomes. Here we show that the Ohia HLHS mouse model, with mutations in Sap130, a chromatin modifier, and Pcdha9, a cell adhesion protein, also exhibits microcephaly associated with mitotic block and increased apoptosis leading to impaired cortical neurogenesis. Transcriptome profiling, DNA methylation, and Sap130 ChIPseq analyses all demonstrate dysregulation of genes associated with autism and cognitive impairment.

View Article and Find Full Text PDF

Robust preclinical models of asymmetric ventricular loading in late gestation reflecting conditions such as hypoplastic left heart syndrome are lacking. We characterized the morphometry and microvascular function of the hypoplastic left ventricle (LV) and remaining right ventricle (RV) in a sham-controlled late gestation fetal lamb model of impaired left ventricular inflow (ILVI). Singleton fetuses were instrumented at ∼120 days gestational age (dGA; term is ∼147 days) with vascular catheters, an aortic flow probe and a deflated left atrial balloon.

View Article and Find Full Text PDF

Aims: In repaired tetralogy of Fallot (rTOF), the septal anatomical isthmuses (AI), AI 3, between the ventricular septal defect (VSD) and pulmonary annulus, and AI 4, between the VSD and tricuspid annulus, are important ventricular tachycardia (VT) substrates when slow conducting. Our aim was to assess the influence of VSD characteristics, specifically the presence of muscular or fibrous tissue at its border, on the presence or absence of septal AIs, potentially related to VT.

Methods And Results: All consecutive rTOF patients who underwent electroanatomical mapping between January 2005 and March 2023 with an available surgical report providing VSD details (n = 91) were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!