The synthesis of six close analogues of baclofen [3-(4-chlorophenyl)-4-aminobutyric acid] (BAC), a potent GABAB agonist, are reported. The compounds were designed starting from the structural informations contained in the solid state of BAC, regarded as a possible bioactive conformation, in which the p-chlorophenyl ring is perpendicular to the GABA backbone. A similar conformational situation was created by rigidifying the BAC structure by means of methylene (1), ethylene (2 and 6), or propylene (3) units, or by introducing chlorine atoms (4 and 5) into the ortho positions ("ortho effect"). Only compound 5 showed affinity for the GABAB receptor. Compound 6 [1-(aminomethyl)-5-chloro-2,3-dihydro-1H-indene-1-acetic acid], which was initially considered as representing the optimal mimic of the solid-state conformation of BAC, was surprisingly found inactive. An extensive conformational analysis was performed on compounds 1-6 in order to evaluate their flexibility and the overlap of their conformational population with respect to BAC. For this purpose a distance map was generated from three possible pharmacophoric groups: the amino and the carboxylic functions, and the phenyl ring. Finally, several explanations are proposed to account for the poor affinities of the prepared compounds such as steric hindrance or flexibility demand of the receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm00108a011 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
The tau protein misfolds in neurodegenerative diseases such as Alzheimer's disease (AD). These pathological tau aggregates are associated with neuronal membranes, but molecular structural information about how disease-like tau fibrils interact with the lipid membrane is scarce. Here, we use solid-state NMR to investigate the structure of a tau construct bearing four AD-relevant phospho-mimetic mutations (4E tau) with cholesterol-containing high-curvature lipid membranes, which mimic the membrane of synaptic vesicles in neurons.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland.
This study investigates the structural, vibrational, and biological properties of novel palladium(II) and platinum(II) complexes with 5-chloro-7-azaindole-3-carbaldehyde (5ClL) and 4-chloro-7-azaindole-3-carbaldehyde (4ClL) ligands. Infrared and Raman spectroscopy, combined with DFT (ωB97X-D) calculations, provided valuable information about metal-ligand interactions, the or conformation of the aldehyde group in the ligands, and the presence of isomers in the metal complexes obtained in the solid state. tests were used to evaluate the antiproliferative activity of the novel complexes against several cancer cell lines, including ovarian cancer (A2780), cisplatin-resistant ovarian cancer (A2780cis), colon cancer (HT-29), and triple-negative breast cancer (MDA-MB-231), as well as normal mouse fibroblasts (BALB/3T3).
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
Diblock copolyelectrolytes have significant potential in applications such as solid-state single-ion conductors, but precisely controlling their nanostructures for efficient ion transport remains a challenge. In this study, we explore the phase behavior and microphase transitions of AX BY-type diblock copolyelectrolytes under alternating electric fields using coarse-grained molecular dynamics simulations. We systematically investigate the effects of various electric field features, including unipolar and bipolar square-waves, as well as offset and non-offset sine-waves, focusing on how field strength and period influence the self-assembling morphology of the copolyelectrolytes.
View Article and Find Full Text PDFSubcell Biochem
December 2024
IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.
Nuclear magnetic resonance (NMR) is a spectroscopic technique based on the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits, or to provide information about other macromolecular partners with which such proteins interact. NMR has been instrumental in describing conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!